
Learnersourcing: Improving Learning with
Collective Learner Activity

by

Juho Kim

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of

Electrical Engineering and Computer Science
August 7, 2015

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Robert C. Miller

Professor
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students





Learnersourcing: Improving Learning with

Collective Learner Activity

by

Juho Kim

Submitted to the Department of
Electrical Engineering and Computer Science
on August 7, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Millions of learners today are watching videos on online platforms, such as Khan Academy,
YouTube, Coursera, and edX, to take courses and master new skills. But existing video
interfaces are not designed to support learning, with limited interactivity and lack of in-
formation about learners’ engagement and content. Making these improvements requires
deep semantic information about video that even state-of-the-art AI techniques cannot fully
extract. I take a data-driven approach to address this challenge, using large-scale learning
interaction data to dynamically improve video content and interfaces. Specifically, this
thesis introduces learnersourcing, a form of crowdsourcing in which learners collectively
contribute novel content for future learners while engaging in a meaningful learning expe-
rience themselves. I present learnersourcing applications designed for massive open online
course videos and how-to tutorial videos, where learners’ collective activities 1) highlight
points of confusion or importance in a video, 2) extract a solution structure from a tutorial,
and 3) improve the navigation experience for future learners. This thesis demonstrates how
learnersourcing can enable more interactive, collaborative, and data-driven learning.

Thesis Supervisor: Robert C. Miller
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Chapter 1

Introduction to Learnersourcing

With an unprecedented scale of users interacting with online platforms, data generated

from their interactions can be used to understand collective preferences and opinions, cre-

ate new content, and improve future users’ experience. In several domains, this thesis

introduces methods for 1) extracting meaningful patterns from natural interaction traces, 2)

eliciting specific information from users by designing microtasks that are inherently mean-

ingful to them, and 3) changing the interface behavior immediately as more data becomes

available. These data-driven methods demonstrate how interaction data can be powerful

building blocks for enhancing massive-scale learning, planning, discussion, collaboration,

and sensemaking online.

Specifically, this thesis focuses on video learning in online education settings. Millions

of learners today are using educational videos to master skills and take courses from online

platforms such as YouTube, Khan Academy, Coursera, or edX. Video is an efficient and

scalable medium for delivering educational content. It can be accessed any time from any-

where, and learners can watch at their own pace. Also, once a video is published, millions

of learners can learn from the same material. But learners and instructors encounter many

problems in using video to learn and teach online.

For video learners, their diverse goals in navigating through a video are often not met

by existing video players. For example, finding information, skimming through the content

quickly, skipping familiar sections, and navigating to specific points inside a video are

difficult. Because many instructional videos do not have an accompanying outline, learners
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often have to rely on imprecise estimates to locate their points of interest within a video.

Such limited content navigation can be detrimental to learning, because learners cannot

easily review or reflect on the content.

Also, many video platforms do not support exercises for active learning. Education

literature has long advocated for interactivity while watching a video [46, 61, 156], and a

recent study has found that online learners who engage in activities learn more than those

who primarily watch videos [94]. More video platforms have started to support in-video

quizzes while learners watch a video, but for a long-tail of videos produced by amateurs

with limited budget and editing expertise, embedding exercises may be difficult.

For video instructors, they cannot easily understand and measure how learners are using

their material. Even if there are editing glitches in the video or most learners are confused

at a certain point, instructors often lack useful tools to detect such issues and act on them.

Also, updating content, creating a video outline, or adding exercises requires a sig-

nificant amount of time and effort. Furthermore, if the platform they are using does not

provide built-in support for these actions, many instructors do not realize making such

improvements is possible and helpful to learners.

The problems that learners and instructors face with video cannot be easily solved with

existing video interfaces and tools. Generating high-level content summaries or in-video

quizzes requires deep semantic information about videos. Solutions involving humans re-

quire an extensive amount of customization, expertise, or manual effort for each video,

but this cannot scale to millions of educational videos found online. Solutions involving

automated methods such as computer vision or natural language processing work well for

certain constrained environments, but even state-of-the-art AI techniques cannot yet reach

the level of video understanding required in this problem. To better understand the problem

space, it is important to understand what instructional videos are like, how learners tend to

use them, and how they currently support learning.
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1.1 Background

Educational videos contain instructional content for viewers who aim to learn knowledge

about a concept or skills about a task. As video has become a popular medium on the

Internet, its educational use has also rapidly grown. The YouTube EDU channel has over

10 million subscribers 1, and Khan Academy hosts over 5,000 videos on math and science,

with more than 15 million registered students 2. Massive open online courses (MOOCs)

have opened access to quality instructional materials at a global scale, with popular plat-

forms such as Coursera, edX, and Udacity attracting millions of learners, partnering with

hundreds of schools, and hosting thousands of courses. Research shows that learners on

MOOC platforms spend a majority of their time on the platforms watching videos [18, 149].

For professional skill learning, Lynda.com hosts over 3,500 courses and 140,000 videos 3.

While most web-based video learning platforms primarily target self-directed learners,

in-classroom usage of video has increasingly gained popularity. In a recently published

report on the use of video in education [73], 66% of survey respondents who are educators

answered that their institutions use video for remote teaching in higher education, and 95%

mentioned that students create or use video in their school work. Another noteworthy

trend is flipped classrooms, an instructional model in which instructional content delivery

takes place outside of the classroom and class time is dedicated to deeper exploration and

collaborative activities. Often, video lectures are assigned to students to watch at home, as

indicated by 46% of the respondents who said they use video for this purpose.

There are different types of educational videos that span a variety of learning objectives,

instructional approaches, presentation methods, and editing styles. This thesis mainly cov-

ers two types of educational videos, namely lecture videos and how-to videos.

Lecture videos teach conceptual knowledge, which involves understanding principles

that govern a domain and relationships between knowledge in a domain [145], and answers

why things happen in a particular way [67]. These videos can be commonly found in mas-

1https://www.youtube.com/education, accessed on August 4, 2015
2http://www.telegraph.co.uk/education/educationnews/11379332/

A-day-in-the-life-of-Khan-Academy-the-school-with-15-million-students.
html

3http://www.lynda.com/press, accessed on August 4, 2015

https://www.youtube.com/education
http://www.telegraph.co.uk/education/educationnews/11379332/A-day-in-the-life-of-Khan-Academy-the-school-with-15-million-students.html
http://www.telegraph.co.uk/education/educationnews/11379332/A-day-in-the-life-of-Khan-Academy-the-school-with-15-million-students.html
http://www.telegraph.co.uk/education/educationnews/11379332/A-day-in-the-life-of-Khan-Academy-the-school-with-15-million-students.html
http://www.lynda.com/press
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Figure 1-1: Lecture videos on the web show different styles, including a.) classroom
lecture, b.) ‘talking head’ shot of an instructor at a desk, c.) digital tablet drawing format
popularized by Khan Academy, and d.) PowerPoint slide presentations.

sive open online courses (MOOCs) via platforms such as Coursera, edX, or Udacity. While

the standard mode of video learning is to watch a clip, instructors and platforms strive to

improve the learning experience by curating a series of lecture videos into a course, embed-

ding in-video quizzes, or adding discussion forums. Research shows that video production

factors affect learners’ engagement with MOOC videos [59]. For example, with MOOC

videos longer than six minutes, learners’ engagement significantly drops. Challenges in

supporting learning from lecture videos lie in monitoring learners’ engagement contin-

uously, identifying where and why learners are disengaged during their video watching

session, and improving the content or the video interface.

How-to videos teach procedural knowledge, which includes a sequence of actions for

solving problems [145], and answers how things happen in a particular way [67]. These

videos include instructions for how to complete a task in a step-by-step manner, and can

be commonly found on tutorial websites and social video platforms. Because many of
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Figure 1-2: How-to videos include step-by-step instructions, spanning various domains
including cooking, graphical design, home improvement, and applying makeup.

these videos are not labeled with step information, learners often face difficulty navigating

the video with more control. Challenges in supporting learning from how-to videos lie in

labeling videos with actions or steps, assisting learners with following along the steps in

the video, and supporting step-by-step navigation of the video.

1.2 Learnersourcing: Crowdsourcing with Learners as a

Crowd

To address the presented challenges in video learning, this thesis takes a data-driven ap-

proach. What if we use data generated from learners’ interaction with video content to un-

derstand and improve learning? Unique design opportunities arise from the fact that a large

group of learners watch the same video, and that video platforms can track the learning

process at a fine-grained level: second-by-second and click-by-click. Further, data-driven

understanding can eventually be used to improve the video content and interfaces.
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In designing better video learning environments, this thesis introduces learnersourc-

ing, which uses a large group of learners’ input to improve video contents and interfaces.

As the name implies, learnersourcing is a form of crowdsourcing with learners as a crowd.

Crowdsourcing has offered a new solution to many computationally difficult problems

by introducing human intelligence as a building block. Inspired by the concept of crowd-

sourcing, learnersourcing also attempts to collect small contributions from a large group of

users. The fundamental difference is that while crowdsourcing often issues an open call

to an undefined crowd, learnersourcing uses a specialized crowd: learners who are inher-

ently motivated and naturally engaged in their learning. This difference leads to a unique

set of design considerations, in terms of incentive design, quality control, task scope, and

task difficulty. As a result, learnersourcing can tackle problems that computers or general

crowdsourcing cannot easily solve.

A crucial element in learnersourcing is to design learner’s activity that is pedagogically

beneficial, while the system collects useful information as a byproduct of such activity.

Learnersourcing attempts to establish a feedback loop between the learner and the system.

As the learner watches the video naturally or answers some prompt that helps their learning,

the system processes the byproduct of these activities to dynamically improve content and

interfaces for future learners.

1.3 Passive and Active Learnersourcing

Depending on how learners’ input is collected, this thesis defines two types of learner-

sourcing: passive learnersourcing and active learnersourcing. In passive learnersourcing,

the system collects information passively, just by watching the learner. In active learner-

sourcing, the system actively interrupts the learner to request information.

Passive learnersourcing uses data generated by learners’ natural interaction with the

learning platform. Examples includes playing and pausing events from the video player,

and browsing patterns between learning modules. On the other hand, active learnersourc-

ing prompts learners to engage in specific activities, with the purpose of providing peda-

gogical benefits (for the current learner) and collecting useful information (for future learn-



1.3. PASSIVE AND ACTIVE LEARNERSOURCING 31

ers) at the same time. Examples include asking learners to summarize video segments they

watched, to answer embedded questions, and to explain concepts discussed in the instruc-

tional material in their own words. In both passive and active learnersourcing, the system

processes the collected data to further analyze how learners are using the instructional ma-

terials and improve future learners’ learning experience. This thesis introduces a set of

active and passive learnersourcing applications to support video learning at scale.

1.3.1 Passive Learnersourcing: Natural learner interactions improve

video learning

In traditional classrooms, teachers adapt their instruction to students based on their level

of engagement and confusion. While online videos enable access for a wide audience,

instructors and learners are disconnected; it is as if instructors are talking to a wall with-

out feedback from learners watching the video. This thesis introduces a technique that

leverages natural learning interaction data to better understand and improve video learning,

specifically using thousands of learners’ second-by-second video player interaction traces

(e.g., clicking the play button in the video player). The thesis will report a post-hoc analysis

of this data to guide the improvement of the material, and further introduce an improved

video interface in which video presentation dynamically adapts to collective video learning

patterns.

Data analysis of 39 million MOOC video clicks

Exploratory data analyses of four massive open online courses (MOOCs) on the edX plat-

form investigated 39 million video events and 6.9 million watching sessions from over

120,000 learners. Analyzing collective in-video interaction traces revealed video interac-

tion patterns, one of which is interaction peaks, a burst of play button clicks around a point

in a video indicating points of interest and confusion for many learners. A key observation

was that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to

an instructor view (Figure 1-3). Extending this observation, it is possible to identify stu-

dent activity patterns that can explain peaks, including playing from the beginning of new
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Figure 1-3: An example interaction peak near a scene transition in a lecture video.

material, returning to missed content, and replaying a brief segment [86]. This analysis

has implications for video authoring, editing, and interface design, and provide a richer

understanding of video learning on MOOCs.

LectureScape: Video interface that evolves with data

Adapting the video presentation to the online classroom can directly improve the video

learning experience. LectureScape (Figure 1-5) [85] is an enhanced video player for edu-

cational content online, powered by data on learners’ collective video watching behavior.

LectureScape dynamically adapts to thousands of learners’ interaction patterns to make it

easier to rewatch, skim, search, and review. By analyzing the viewing data as well as the

content itself, LectureScape introduces a set of data-driven interaction techniques that aug-

ment existing video interface widgets: a 2D video timeline with an embedded visualization

of collective navigation traces; dynamic and non-linear timeline dragging; data-enhanced

transcript search and keyword summary; automatic display of relevant still frames next to

the video; and a visual summary representing points with high learner activity. Participants

in a user study commented that “it feels like watching with other students” and it was “more

classroom-y” to watch videos with LectureScape, which shows how large-scale interaction

data can support social and interactive video learning.
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Figure 1-4: This diagram describes how LectureScape implements passive learnersourc-
ing. LectureScape is a video player that adapts to collective learner engagement. As learn-
ers watch a video, the system analyzes collective interaction traces to mine for specific
positions that may indicate points of confusion or importance. Based on this information,
the video player dynamically changes its behavior to recommend popular frames visited
frequently by other learners.

1.3.2 Active Learnersourcing: Learner prompts contribute to new learn-

ing materials

How-to videos contain worked examples and step-by-step instructions for how to complete

a task (e.g., math, cooking, programming, graphic design). My formative study demon-

strated the navigational, self-efficacy, and performance benefits of having step-by-step in-

formation about the solution [89]. Education research has shown powerful learning gains

in presenting the solution structure to learners. Solution structure refers to an organized

representation of how to complete a procedural task, in terms of steps and groups of steps

(subgoals). Steps and subgoals can be labeled and presented as an outline to provide learn-

ers with an overview of a solution. However, such information is not available for most

existing how-to videos online, and requires substantial expert efforts to collect. This the-

sis introduces scalable methods for extracting steps and subgoals from existing videos that
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Figure 1-5: LectureScape: a lecture video player powered by collective interaction data.

Figure 1-6: ToolScape: a step-aware how-to video player.

do not require experts, as well as an alternative video player where the solution structure

is displayed alongside the video. These techniques actively prompt learners to contribute

structured information in an in-video quiz format.
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Figure 1-7: This diagram describes how Crowdy implements active learnersourcing.
Crowdy is a video player that coordinates learners’ collective efforts to generate subgoal
labels, which are summarized, abstract descriptions for a group of low-level steps in a
procedural task. As learners watch a video, the video player pauses and prompts learners
to summarize video sections. The system coordinates learner tasks in multiple stages to
reach a final set of summary labels for the clip. The video player dynamically displays the
collectively generated video outline as future learners visit and watch the video.

ToolScape: Extracting step-by-step information from how-to videos

The findings from the formative study guided the design of ToolScape, a video player

that displays step descriptions and intermediate result thumbnails in the video timeline

(Figure 1-6) [89]. To enable non-experts to successfully extract step-by-step structure from

existing how-to videos at scale, ToolScape includes a three-stage crowdsourcing workflow.

It applies temporal clustering, text processing, and visual analysis algorithms to merge

crowd output. The workflow successfully annotated 75 cooking, makeup, and Photoshop

videos on YouTube of varying styles, with a quality comparable to trained annotators across

all domains, with the average cost of about $1 for a minute of video.
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Figure 1-8: Crowdy: a learnersourcing workflow for summarizing steps in a how-to video.

Crowdy: Learnersourcing section summaries from how-to videos

Taking a step further, what if learners, both an intrinsically motivated and uncompensated

crowd, can generate summaries of individual steps at scale? This research question re-

sulted in a learnersourcing workflow that periodically prompts learners who are watching

the video to answer one of the pre-populated questions, such as “what was the overall goal

of the video section you just watched” (Figure 1-8) [163]. The system dynamically de-

termines which question to display depending on how much information has already been

gathered for that section in the video, and the questions are designed to engage learners

to reflect on the content. Learners’ answers help generate, evaluate, and proofread sub-

goal labels, so that future learners can navigate the video with the solution summary. This

led to a live deployment of Crowdy, a website with the learnersourcing workflow imple-

mented on a set of introductory web programming videos. A study with crowd workers

on Mechanical Turk showed that participants with Crowdy retained information about the

solution better than those with a standard video player, and at the same level as those who

saw expert-generated labels. The 25-day deployment attracted more than 1,200 learners

who contributed hundreds of subgoal labels and votes. A majority of learner-generated

subgoals were comparable in quality to expert-generated ones, and learners commented

that the system helped them grasp the material.

When combined, the two methods (ToolScape for individual steps and Crowdy for sub-

goal labels) can fully extract a hierarchical solution structure from existing how-to videos.
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1.4 Contributions

Two primary technical contributions of learnersourcing are 1) methods for collecting and

processing large-scale data from learners, and 2) data-driven interaction techniques to aug-

ment existing video players. These techniques are then validated by a series of evaluation

studies that measure pedagogical benefits, resulting data quality, and learners’ qualitative

experiences. This thesis combines these components to demonstrate that learnersourcing

can improve the content and interfaces in a way neither experts, nor computers, nor existing

crowdsourcing methods can achieve at scale.

The contributions are made possible by uniquely extending and combining the follow-

ing families of techniques: crowdsourcing to aggregate small contributions into meaning-

ful artifacts, social computing to motivate participation and build a sense of community

among learners, content-based video analysis techniques such as computer vision and

natural language processing to complement learner input, and learning science to inform

the design of learnersourcing tasks that are pedagogically meaningful.

Thesis statement: In large-scale video learning environments, interfaces powered by

learnersourcing can enhance content navigation, create a sense of learning with others, and

ultimately improve learning.

1.5 Thesis Overview

Chapter 2 lays the groundwork for learnersourcing by covering major research challenges

in the context of related work.

The main part of the thesis introduces four learnersourcing applications. These chapters

span data analysis, interface design, technical solutions, usability and learning evaluation,

and live deployment.

• Chapter 3 presents the first application of passive learnersourcing, which is a large-

scale analysis of learners’ in-video interaction in MOOCs. Specifically, it focuses on

in-video dropout and interaction peak patterns.
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• Chapter 4 presents the second application of passive learnersourcing, LectureScape,

which is a lecture video player powered by learners’ collective video interaction data.

• Chapter 5 presents the first application of active learnersourcing, ToolScape, which

extracts step-by-step instructions from an existing how-to video. It features a three-

stage workflow and a step-aware video player.

• Chapter 6 presents the second application of active learnersourcing, Crowdy, which

learnersources section summaries of a how-to video. This chapter introduces a three-

stage workflow and a learnersourcing-enhanced website for watching how-to videos.

Combined with ToolScape, Crowdy can extract a hierarchical solution structure from

existing how-to videos.

Chapter 7 summarizes design lessons from the four learnersourcing applications, and

discusses major design dimensions and limitations to assist future researchers and practi-

tioners in their learnersourcing design.

Finally, Chapter 8 reviews the contributions of the thesis proposes future research di-

rections for learnersourcing.



Chapter 2

Related Work

There are four main areas of research that this thesis builds upon: crowdsourcing to solicit

learner participation and coordinate learner tasks at scale; interaction data processing

to handle collected interaction data from learners; learning science to make pedagogically

meaningful enhancements to video learning; and video applications to better extract useful

information from video content and design more interactive video interfaces. This chapter

reviews literature in these four domains.

2.1 Crowdsourcing and Human Computation

A majority of existing crowdsourcing systems rely on paid crowd workers (e.g., workers

on Mechanical Turk or oDesk) who are offered monetary reward upon completion of the

task. When designing crowd-powered application, paid crowdsourcing makes it easy to use

the power of the crowd on demand. When considering using learners as a crowd, however,

system designers should consider a unique set of challenges, one of which is incentive

design.

Learnersourcing is inspired by prior work on human computation [160], in which the

system solicits human input for certain parts of the computation. Games with a Pur-

pose [159] present computationally difficult problems (e.g., tagging objects from an im-

age [160] or protein folding [fold.it]) as a game. As users play the game, the byprod-

uct of the gameplay is collected and processed by the system. What makes this approach

fold.it


40 CHAPTER 2. RELATED WORK

scalable and motivational is that users do not have to know how their input is used by the

system, because they have the strong motivation to play the game anyway. In learnersourc-

ing, learners’ tasks need to be designed so that they are intrinsically useful and enjoyable.

Another way to motivate the crowd is to expose the underlying goal of the human com-

putation system, especially if the goal is serving the public good. Examples include helping

scientific discoveries (e.g., Zooniverse [www.zooniverse.org], FoldIt [fold.it],

Lab in the Wild [www.labinthewild.org/]) or improving civic engagement (e.g.,

Ushahidi [www.ushahidi.com], Factful [87], and BudgetMap [91]). Zooniverse is a

research platform where volunteers can assist professional researchers with various tasks

that require human judgment or intelligence at scale. Tasks include classifying galaxies

by analyzing photos, or identifying directions the wildebeest to track where they are go-

ing. Ushahidi allows the crowd to report incidents of violence and peace efforts, especially

during a crisis. The collected reports collectively serve as an up-to-date dashboard that

journalists and citizens alike can benefit from. In learnersourcing, the bigger cause pre-

sented to learners is that their contributions can not only help them but future learners learn

better.

There also exist crowdsourcing applications that require domain knowledge and exper-

tise beyond what the random crowd can handle. Recent research has begun using crowds

within a community to tackle more domain-specific and complex problems. Communi-

tysourcing [66] outsources tasks that community members are qualified and motivated to

perform, such as computer science students at a university grading homework problems for

free snacks offered from a vending machine. Cobi [90] asks authors of accepted papers

at an academic conference to specify papers that are relevant to theirs. The authors’ input

is used by the system to detect preferences and constraints, which conference organizers

consider when scheduling the conference.

Some existing applications can be categorized as learnersourcing, in which the crowd’s

motivation for participation is learning. Duolingo [www.duolingo.com/] asks lan-

guage learners to translate text and uses the translated text to provide a commercial text

translation service. Dontcheva et al. [40] augmented Photoshop to embed real-world image

manipulation tasks for learners, thus satisfying the requesters’ and the learners’ needs at

www.zooniverse.org
fold.it
www.labinthewild.org/
www.ushahidi.com
www.duolingo.com/
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the same time. Learnersourcing applications introduced in this thesis differ from the two

examples above in that the artifact the crowd creates directly benefits the crowd themselves,

not external requesters. Mechanical MOOC [mechanicalmooc.org/] aims to create

a MOOC experience without any instructor, by coordinating learner activities with a set

of online communication tools. This thesis defines learnersourcing and discusses major

design dimensions any learnersourcing application should consider, along with examples

of learnersourcing in the context of video learning.

2.1.1 Crowdsourcing Workflows

Research on multi-stage crowd workflows inspired the design of our crowdsourcing and

learnersourcing methods. Soylent [11] has shown that splitting tasks into the Find-Fix-

Verify stages improves the quality and accuracy of crowd workers’ results. Other multi-

stage crowdsourcing workflows were designed for complex tasks, including nutrition in-

formation retrieval from food photos [129], real-time captioning of a speech [104], activity

recognition from streaming videos [106], taxonomy generation [31], and search engine an-

swer generation [12]. Systems have also been built to leverage the wisdom of the crowds

to generate information on educational videos. For example, VidWiki [36] crowdsources

incremental improvements to educational videos with annotations.

These applications demonstrated that crowdsourcing can yield results comparable to

those of experts at lower cost. This thesis contributes to this line of work two crowd-

powered workflows (Chapters 5 and 6) in the domain of video annotation and online

education. These workflows are designed explicitly for a crowd of learners who are nat-

urally watching the video with their own desire to learn. Designing human computation

tasks for voluntary learners presents a unique set of challenges, which we address with our

workflow.

2.1.2 Crowdsourced Data Annotation

Studies have shown that gathering data using crowdsourcing can be accurate and highly

successful. Sorokin and Forsyth [154] used Amazon Mechanical Turk to generate quality

mechanicalmooc.org/
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image annotations at a cheap rate. Snow et al. [153] showed that aggregating individual

annotators’ input over a small number quickly can yield results comparable in quality to

those produced by experts, even though annotations from individuals may produce noisy

results. MacLean and Heer [109] demonstrated that in identifying medical terms in patient-

authored text, crowdsourced annotations can train medical term classifiers that outperform

systems by experts. This thesis introduces crowdsourced data annotation methods for ex-

tracting information from educational videos.

2.2 Interaction Data Processing

Interaction data refers to any kind of data the system can collect as users interact with

the system. In video learning, examples include clickstream data generated from learners’

interaction with the video player, such as clicking on the play button or scrubbing on the

video timeline. Existing research has explored ways to use video interaction data to infer

learners’ engagement, either by using implicit user data (interaction log) or explicit user

data (clicking the “important” button or voting).

Implicit user data has the benefit of requiring no additional action on user’s part, be-

cause this data is automatically captured by the system while users naturally interact with

videos. Shaw and Davis advocate using actual viewership data in modeling user inter-

est [150]. Existing systems leverage scrubbing [169], zooming and panning [22], and play-

ing and pausing [32] activities. SocialSkip [32] demonstrates that modeling users’ video

interactions can accurately capture user interest in information retrieval tasks. While this

thesis adopts the idea of using video clickstream data from the literature, our analysis dif-

fers in that it uses large-scale interaction data from MOOCs, and that it focuses on in-video

dropout and interaction peaks in the educational context. Passive learnersourcing primarily

relies on implicit user data.

Explicit user data can be collected by asking users to make a specific action around

their points of interest. Previous research used user rating data [130] or annotations [150].

CLAS [144] is a lecture video annotation tool where students click a button when they find

a part of the video important. The system aggregates responses from all students in a class
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to visualize important points. Also, we extend prior work on providing social navigation

for lecture videos [121] to support diverse learning tasks. Active learnersourcing primarily

relies on explicit user data.

2.2.1 Modeling Collective User Data

There is a rich thread of research in using collective user interaction history data to analyze

usage patterns and improve users’ task performance. Interaction history data is automat-

ically collected by applications during normal usage. Examples include Web browsers

logging Web page visit history, search engines capturing query history, and video players

storing video interaction clickstreams such as play and pause events. Read Wear [68] pre-

sented a visionary idea in this space to visualize users’ read and edit history data in the

scrollbar. Chronicle [58] captured and provided playback for rich, contextual user inter-

action history inside a graphical application. Dirty Desktops [71] applied magnetic forces

to each interaction trace, which improved target selection for commonly used widgets.

Patina [117] separated individual and collective history and added overlays on top of the

GUI, to help people find commonly used menu items and discover new ways of completing

desktop-related tasks. Causality [124] introduced an application-independent conceptual

model for working with interaction history. This thesis introduces a technique for using

video interaction history to support common navigation tasks in video-based learning.

2.2.2 Tools for temporal pattern analysis

Understanding temporal patterns in large-scale video interaction data requires powerful

computational and visual tools.

Temporal pattern analysis of time-series data inspired the analytical methods in this

thesis. Kleinberg [93] introduced a burst model for detecting meaningful structure in doc-

uments, and Jones and Diaz [78] applied this model among other temporal features to

identify temporal patterns in search queries. Using search query and social media streams,

researchers categorized search query patterns and trending events based on the shape of

spikes [79, 98]. This thesis applies similar techniques to analyze video interaction patterns,
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which is enabled by large-scale data collected from educational videos.

Video analytics platforms can enable the visual sensemaking of large-scale data. Gen-

eral purpose video platforms such as Youtube provide advanced analytics [55, 166] for

content authors. These services include dashboards showing viewership graphs over time

for a video, and suggest focusing on rises and dips. Our approach considers more in-depth

activity data such as play, pause, and skip events on the player, and content specific to ed-

ucational videos, such as video kinds (lecture or tutorial), presentation styles (slide, head

shot, etc.), and visual transitions between the presentation styles.

2.3 Learning Science

Constructivism and active learning theories emphasize the importance of the learner’s ac-

tive role in engaging with the learning material and the learning process. In active learning,

students engage in reading, writing, discussion, and problem solving, rather than just listen-

ing to delivered lectures [16]. More specific activity examples include group discussions,

short written exercises, learning by teaching, and reacting to a video. Previous research

has shown the pedagogical benefits of active learning over traditional lectures [50, 142]. A

meta-analysis of hundreds of research studies, dubbed ICAP [25], found that learning in-

creases as engagement increases. ICAP provides a more precise definition to active learning

by differentiating between the types of active learning, and ranks these activities as follows

(from most to least learning impact): Interactive > Constructive > Active > Passive.

Passive concerns receiving instruction without any overt action; Active involves students

selecting and manipulating materials; Constructive goes beyond what is presented in the

material and engages students to generate novel information; and Interactive involves two

or more students collaboratively working together via dialog. For instance, simply watch-

ing a video is a Passive activity, while answering in-video quizzes and open-ended exercises

can promote Active and Constructive learning. Examples in this thesis primarily fall under

the Active and Constructive categories, although the Interactive mode is partly triggered as

learners see and manipulate materials generated by other learners. A recent MOOC study

also confirms ICAP by showing that students who engage in activities learn more than those
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who primarily watch or read expository content [94].

Another form of constructive learning is self-explanation, an activity that prompts learn-

ers to explain their answers and thinking [26]. It increases learning by encouraging students

to make inferences and adjust mental models. A surprising research finding is that the learn-

ing benefits of self-explanations hold even without the presence of a teaching expert or any

performance feedback [26]. Moreover, research has shown that these learning benefits

extend to multimedia learning environments [167]. In terms of modality for explanation,

students self-explained more frequently when asked to speak than when asked to type [64].

2.3.1 Video Learning Theories

In designing user interfaces for instructional videos, higher interactivity with the content

has been shown to aid learning [46, 156]. Tversky et al. [156] state that controlling the

playback of an animation such as stopping, starting and replaying can promote reinspec-

tion, which in turn can mitigate challenges in perception and comprehension, and further

facilitate learning. Semantic indices and random access have been shown to be valuable in

video navigation [1, 108, 171] and the lack of interactivity has been deemed a major prob-

lem with instructional videos [61]. Tutored Videotape Instruction [51] reported improved

learning when pausing videos every few minutes for discussion. VITAL [141] allows stu-

dents to clip and annotate on video segments, and further embed them in multimedia essays.

While VITAL enables adding videos to an activity, active learnersourcing takes an opposite

approach by adding activity to a video. In summary, this thesis introduces user interfaces

for giving learners more interactivity in video navigation, and learnersourcing methods for

acquiring metadata required to create such user interfaces at scale.

2.3.2 Learning Procedural Knowledge

How-to videos help learners master a sequence of steps to complete a procedural task.

Chapters 5 and 6 introduce learnersourcing applications designed for how-to videos. There

is a rich body of research focusing on mechanisms that improve learning procedural knowl-

edge.
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How to Make a Cake
Combine the dry ingredients

1. Put 2 cups of water into a mixing bowl
2. Add 1 cup of sugar to the bowl
3. Add 2 tbsp of baking soda
4. Add 1/2 tsp of salt
5. Stir together

Separately combine wet ingredients
6. In another bowl, beat two eggs
7. Add 1 stick of butter and beat
8. Add 1 cup of milk and stir

Overall goal

Subgoal

Individual 
steps

Subgoal

Individual 
steps

Figure 2-1: An example of the breakdown between goal, subgoals, and individual steps
for a procedural task. Creating subgoals from individual steps requires self-explanation and
summarization.

Eiriksdottir and Catrambone [44] explored the effects of presenting learners with differ-

ent forms of instructional material for learning procedural knowledge. They discovered that

including specific instructions helped learners complete the initial task but those learners

did not retain the information. Conversely, learners presented with more holistic instruc-

tions had greater learning and transfer.

Previous research [113] has shown that people learn better from videos if they are si-

multaneously presented with the subgoals, which capture meaningful conceptual pieces of

the procedure covered in the video (Figure 2-1). Presenting subgoals improves learning by

reducing learners’ cognitive load by abstracting away low-level details, and by encouraging

learners to self-explain why a set of steps have been grouped [23].

Margulieux et al. showed that instructions including both specific steps and subgoals [113]

resulted in improved learning and transfer, compared to those with the specific steps alone.

Buykx and Petrie [21] included subgoals in recipe instructions and showed that displaying

steps and subgoal information improves understanding in domains other than software ap-
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plications. The TAPS method [24] proposes a systematic workflow for extracting subgoals

for existing lecture videos with a domain expert and a knowledge extraction expert work-

ing together. This thesis suggests that knowledge extraction experts, namely learners who

are novices in their domains, are a viable source for providing information to help other

domain novices.

Regarding the effectiveness of learning with how-to videos, there have been mixed

results on the effect of instruction media types on learning and performance. Palmiter

et al. [131, 132] showed that while users with animated demonstrations completed tasks

faster with fewer errors, they showed weaker performance in a retention task after a week.

Harrison [62] found that users with animated tutorials learned skills quicker and performed

better than with textual tutorials. There was no significant difference between still and

animated graphics, however.

Tversky et al. [156] compiled research on animated instructions and concluded that

there is no decisive evidence in favor of them. The authors suggest that the advantage is

mostly from having more information or interactivity in the animated condition than the

static condition. In a more recent meta-analysis of 26 studies comparing static graphics

against animated instructions, animations showed a higher effect size [69]. In efforts to so-

licit when dynamic displays are more effective, the authors find that learners perform better

when animated instructions are more representational, realistic, and related to procedural-

motor knowledge.

2.4 Video Applications

2.4.1 Video Interfaces for Learning

Many existing online learning platforms support in-video quizzes for flipped classrooms

and MOOCs. Khan Academy [khanacademy.org] links supplementary videos to practice

problems, and EDpuzzle [edpuzzle.com] and eduCanon [educanon.com] allow inserting

quizzes into any video. MOOC platforms such as Udacity [udacity.com], Coursera [cours-

era.org], and edX [edx.org] commonly pause the video every few minutes and ask short
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questions to engage learners and test learning.

While MOOC exercises are typically limited to multiple choice and short answer ques-

tions, recent systems have focused on incorporating more interactive modalities into video

learning. RIMES [84] supports interactive multimedia exercises where learners can record

their responses to instructors’ exercises in drawing, audio, and video while watching a

video. Mudslide [53] asks learners to spatially annotate points of confusion after watch-

ing a video, and automatically generates a heatmap of confusion for instructors to review.

L.IVE [122] is a video learning platform that integrates video, comments, and assessments

in a single view. Improving social learning support is another way to promote interactive

learning, via discussion forums, chat rooms [34], peer feedback and grading [137], and live

video discussions [99].

As units of learner activity grow in complexity, a major challenge is in making feedback

and grading scale: open-ended short answers [8, 19] and essay writing [114] have been

explored. For programming assignments, OverCode [54] clusters student solutions and

provides a user interface for instructors to filter and explore them.

2.4.2 Video Content Analysis

Content-based video analysis [152] has long been an active research area. Previous research

uses image analysis and computer vision to extract keyframes [52], shot boundaries [108],

or visual saliency [70]. This thesis applies simple content-based analysis metrics such as

pixel differences between video frames in the analysis and UI design. Further, we combine

video interaction data and content-based analysis to gain a more complete understanding

of learner engagement.

2.4.3 Video Navigation Techniques

To improve video navigation with interaction data, this thesis introduces novel techniques

that 1) add richer interactions to the video timeline, 2) support enhanced in-video search,

and 3) automatically summarize video content. We now review related work for each of

the three techniques.
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Video Timeline Enhancements

To improve video scrubbing, YouTube displays thumbnail previews for quickly skimming

local frames, and Swift [116] overlays low-resolution thumbnails to avoid network latency

delays. The content-aware timeline [139] extracts keyframes with content analysis and

plays a video snippet around these points when the user scrubs the timeline. Elastic in-

terfaces [115] use the rubber band analogy to control scrubbing speed and support precise

navigation, as seen in the PV Slider [143] and Apple’s iOS video interface. We extend this

line of research by asking: “What if the scrubbing behavior adapts to learners’ watching

patterns, as collected from interaction history data?” To our knowledge, no video scrubbing

technique has leveraged interaction history data.

Other timeline enhancement techniques for supporting video navigation rely on addi-

tional metadata and attributes from video. Chronicle [58] and Video Lens [119] add addi-

tional layers of information and facets to the video timeline to improve navigation, search,

and browsing. Another thread of research focuses on how-to videos. Existing systems re-

veal step-by-step structure by adding rich signals to the video timeline, such as tool usage

and intermediate results in graphical applications [29, 89].

Lecture videos have a different kind of structure from how-to videos, as they are often

organized in conceptual units rather than a sequence of concrete steps. Therefore, capturing

and presenting structural signals from lecture videos will need a different approach from

how-to videos. For lecture videos, this thesis turns to interaction data that is automatically

logged by the system as learners watch the video.

Video Search Techniques

Popular GUI applications such as Web browsers and text editors have incremental search

features where the scrollbar and text visually highlight locations of search term occur-

rences. Also, video players on educational platforms such as edX show a synchronized

transcript alongside the currently playing video. Learners can search for text in the tran-

script and then click to jump to the corresponding spot in the video. We improve these

interfaces by augmenting search results with interaction data and visualizing them on the



50 CHAPTER 2. RELATED WORK

video timeline. Video Google [151] uses computer vision techniques to retrieve and in-

dex all the occurrences of various objects in a video. This thesis focuses on extracting

higher level information from a video, such as a section summary, rather than fine-grained,

object-level information.

Video Summarization

Existing video summarization techniques use video content analysis to extract keyframes [5,

52], shot boundaries [108], and visual saliency [70]. To provide an overview of the entire

clip at a glance and support rapid navigation, recent research has used a grid layout to dis-

play pre-cached thumbnails [118], short snippets [74] in a single clip, or personal watching

history for multiple clips [2], a conceptual hierarchy visualization [75], or a 3D space-time

cube display [126].

For educational lecture videos, Panopticon [74], a system that lays out animated grid

of video thumbnails for rapid overview, has been shown to shorten task completion time

in seeking information inside videos [128]. For blackboard-style lecture videos, Note-

Video [123] reverse-engineers a rendered video to create a summary image and support

spatial and temporal navigation.

Recent systems have attempted to create a hybrid of video and text presentation to sup-

port browsing and skimming of video. Video Digests [136] and VideoDoc [96] introduce

new video formats that reveal a section structure with summaries and transcripts.

This thesis introduces alternative summarization techniques that use data from learn-

ers’ interaction with the video. This method can be combined with content analysis to

incorporate social signals in extracting highlights and navigational cues.

2.4.4 Video Annotation

This thesis focuses on providing a scalable and generalizable video annotation solution

without relying on trained annotators, experts, or video authors. Video annotation tools

capture moments of interest and add labels to them. Many existing tools are designed for

dedicated annotators or experts in limited context. Domain-specific plug-ins [28, 56, 58]
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automatically capture task information, but require direct access to internal application

context (e.g., Photoshop plug-ins accessing operation history). But plug-ins do not exist

for most procedural tasks outside of software applications (e.g., makeup), which limits the

applicability of this method.

Fully automated video annotation solutions rely primarily on computer vision tech-

niques. Vision-based methods work best when a domain is well-specified and task prop-

erties are consistent (e.g., specific software applications [7, 138], graphical user inter-

faces [39, 168], or fixed camera positions [60]). Recent systems have used deep convo-

lutional neural networks for higher accuracy annotation. A recent system combines text,

speech, and vision to align textual step descriptions with video [110], which trains its model

with a domain-specific classifier. For educational videos, EdVidParse [140] uses computer

vision to annotate people and textual content, two of the common components in most

videos. This thesis introduces annotation techniques involving human input that mitigate

the limitations of automated methods.

Crowdsourcing video annotation has recently gained interest as a cost-effective method

without relying on experts while keeping humans in the loop. Existing systems were de-

signed mostly to collect training data for object recognition [170], motion tracking [155,

161], or behavior detection [134]. Rather than use crowdsourcing to support qualitative re-

searchers, this thesis aims to support end users learning from videos. Adrenaline [10] uses

crowdsourcing to find the best frame from a video in near real-time. While [10] and our

work both aim to detect a time-specific event from a video stream, our work additionally

labels the event and expands to capture surrounding context.

2.4.5 Interactive Tutorials

The HCI community has been actively exploring better formats for tutorials. Recent HCI

research either takes a negative position on including video instructions [56, 82], or advo-

cates for using them in context [28, 57, 100, 101, 138]. While the benefits of animated

demonstrations are under debate, it is needless to say that a growing number of learners are

using video tutorials to master new skills. Popular Photoshop tutorials on YouTube attract
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millions of viewers.

Tutorial Interfaces for Learning Software Applications

A rich body of previous research has looked into tutorial interfaces for learning software

applications. Software applications make a compelling domain for adding learning sup-

port, because demonstrations can easily be captured with screen recording software, and

application-specific context (e.g., list of commands in Photoshop) can be programmatically

accessed. Chapters 5 and 6 contain examples addressing Photoshop and web programming

tutorials, but the techniques introduced in these chapters are meant to generalize to other

how-to domains.

Some of these interfaces focus on ways to visualize and discover the most suitable

tutorials [95, 135], while other systems enhance tutorial content by building on the meta-

data available in software applications [28, 58, 89, 138]. Specific techniques include au-

tomatically generating step-level metadata by demonstration [28, 47, 56, 125], connect-

ing to examples [47, 107, 138], enhancing the tutorial format with annotated informa-

tion [20, 28, 29, 89, 101], and automatically capturing metadata by mining existing tutorials

or video demonstrations [7, 48, 49, 100, 103].

The success of these systems in helping people learn to use software suggests that us-

ing existing information (such as the transcript to a tutorial video) is an effective way to

improve learning. However, many of these systems rely on the underlying structure of soft-

ware applications to generate content [58, 95, 135, 138] and cannot easily be generalized

to domains other than software. This thesis demonstrates that learnersourcing workflows

can provide annotations required to create these interfaces and further enable new ways to

learn from tutorials.



Chapter 3

In-Video Dropouts and Interaction

Peaks

This chapter presents the first example of passive learnersourcing, which is a large-scale

analysis of learners’ in-video interaction in Massive Open Online Courses (MOOCs). This

chapter has adapted, updated, and rewritten content from a paper at Learning at Scale

2014 [86]. All uses of “we”, “our”, and “us” in this chapter refer to coauthors of the

aforementioned paper.

With thousands of learners watching the same online lecture videos, analyzing video

watching patterns provides a unique opportunity to understand how students learn with

videos. This chapter reports a large-scale analysis of in-video dropout and peaks in view-

ership and student activity, using second-by-second user interaction data from 862 videos

in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in

longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in re-

watching sessions and play events indicate points of interest and confusion. Results show

that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent

and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we

observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view

to a classroom view. Based on this observation, we identify five student activity patterns

that can explain peaks: starting from the beginning of a new material, returning to missed

content, following a tutorial step, re-watching a brief segment, and repeating a non-visual
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explanation. Our analysis has design implications for video authoring, editing, and inter-

face design, providing a richer understanding of video learning on MOOCs.

3.1 Motivation and Contributions

MOOCs often include hundreds of pre-recorded video clips. Recent research on the first

edX course, 6.002x, has shown that learners spend a majority of their time watching videos

[18, 149], but little research has been aimed at the click-level interactions within MOOC

videos. With thousands of learners watching the same online lecture videos, video analytics

can provide a unique opportunity in understanding how learners use video content and what

affects their learning experience.

This chapter analyzes click-level interactions resulting from student activities within

individual MOOC videos, namely playing, pausing, re-watching, and quitting. We analyze

video player interaction logs from four MOOCs offered on the edX platform to identify

temporal interaction patterns at the second-by-second level. Specific focus is given to 1)

in-video dropout rates and 2) peaks associated with re-watching sessions and play events.

Video dropout, i.e., navigating away from a video before completion, is a measure of

engagement. With more engaging videos students might stay until later in the video, result-

ing in lower dropout. Instructors using videos in their pedagogy need to know what aspects

of their videos are the most engaging or most widely viewed. While existing analytics tools

provide access to this data, they do not consider different video kinds (lecture or tutorial)

and presentation styles (slides, head shot, etc.) specific to the educational context.

When a significant number of students interact with a common portion of a video, the

resultant data can be binned to highlight peaks in the video timeline. Peaks in viewership

and student activity can precisely indicate points of interest for instructors and students.

These spikes, hereinafter referred to as interaction peaks, can indicate student confusion,

introduction of important concepts, engaging demonstrations, or video production glitches.

We manually inspected 80 videos from our set to understand why these peaks occur. One

notable observation we made is that the peaks often coincide with visual transitions in a

video, such as switching from a slide to a classroom view, or from handwritten notes to
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a software screencast. Combining the interaction data with visual content analysis, we

identified five student activity types that can lead to a peak.

This chapter makes the following contributions:

• A first MOOC-scale in-video dropout rate analysis, finding higher dropout rates in

longer videos, re-watching students (vs first-time watchers), and tutorials (vs lec-

tures).

• A first MOOC-scale in-video interaction peak analysis, finding more frequent and

sharper peaks in re-watching students (vs first-time watchers) and tutorials (vs lec-

tures).

• Categorization of student activities responsible for a peak: starting from the begin-

ning of a new material, returning to missed content, following a tutorial step, re-

watching a brief segment, and repeating a non-visual explanation.

• Data-driven design implications for video authoring, editing, and interface design in

the context of MOOCs that reflect the temporal interaction patterns of students.

3.2 Video Interaction Dataset

Our dataset consists of interaction logs from the edX video player over four courses offered

in Fall 2012. Each log entry contains user name, time of access, video ID, event type, and

internal video time, as documented in [43]. A play event is created when the user clicks

the play button on the player or scrubs the playhead to a new position while the video

is playing. A pause event is created when the user clicks the pause button or scrubs the

playhead to a new position when the video is paused. Since a mousemove event is not

separately logged, exact scrubbing time and position need to be calculated using the play

or pause event at the end of a scrub.

Table 3.1 summarizes information on the four courses and their videos. We chose the

courses offered at roughly the same time to minimize the effect of changes in the edX

platform, logging method, and student population. They span different institutions, subject
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Course Subject University Students Videos Video Length Processed Events

6.00x Intro. CS & Programming MIT 59,126 141 7:40 4,491,648
PH207x Statistics for Public Health Harvard 30,742 301 10:48 15,832,069
CS188.1x Artificial Intelligence Berkeley 22,690 149 4:45 14,174,203
3.091x Solid State Chemistry MIT 15,281 271 6:19 4,821,837

Total 127,839 862 7:46 39,319,757

Table 3.1: Overview of the four edX courses in our dataset offered in Fall 2012. Students
refers to the number of students who watched at least one video, Videos is the number of all
video clips posted, Video Length is the mean duration, and Processed Events is the number
of total play and pause events captured by the video player.

fields (computer science, statistics, or chemistry), and recording styles. One of the authors

manually labeled video types and presentation styles for all the videos in the video set.

Video types represent a pedagogical purpose of a video, including introduction, tutorial,

or lecture. Presentation styles represent the visual format of instruction: Powerpoint-style

slide, code editor, head shot, classroom recording, and handwritten tablet annotations sim-

ilar to those used in Khan Academy videos.

3.2.1 Data Processing Pipeline

Our data processing pipeline first reconstructs the watching history of each viewer and

then aggregates the per-viewer history data to produce activity statistics for each second-

long segment of the video. Specifically, the first step converts raw interaction log entries

into watching segments. A watching segment keeps track of all continuous chunks of a clip

watched by a user. It includes start and end time for every watched segment. The second

step uses the segment information to create second-by-second counts of viewers, unique

viewers, re-watching sessions, play events, and pause events. Re-watching sessions only

consider a student watching a segment of a video twice or more. Play and pause events

increment a bin count if the event is triggered within that bin. Finally, such information can

be queried upon request for statistical analysis and further processing.

The data processing module was implemented using Insights, the open source learning

analytics library [42], which supports streaming events over SOA (Service-Oriented Archi-

tecture) as well as handling requests for query and view. It also uses Python, MongoDB,
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and the d3 visualization library [17].

3.3 Analysis 1. In-Video Dropout

A dropout rate is defined by the percentage of students who start watching a video but

leave before the video finished playing entirely. The dropout rate can reveal the factors that

affect students to leave a video, helping video authors to consider them. Also, comparing

this rate between videos can illustrate the relative difference in engagement. This analysis

could provide valuable feedback to content creators whose courses are rapidly moving

toward flipped environments where content consumption occurs online. To our knowledge,

no previous work has studied the dropout rates within individual MOOC videos.

3.3.1 Method

For a video of length n seconds, let viewcount(t) denote the number of unique viewing

sessions that include this second for each video. We compute the dropout rate of all videos

in our set as: 1.0 - viewcount(n) / viewcount(0). Note that all edX videos automatically start

playing once the page is open, which might affect the results.

3.3.2 Results

On average across all videos, about 55.2% of viewing sessions (std=14.7) were dropouts

before the end. Out of the 55.2% that dropped out, 36.6% (std=11.1) occurred within the

first 3% of the video length. This means that 18.6% of the dropouts occur during the rest

of the length. It is notable that the dropout rate changes quite dramatically at the beginning

of a video.

Why do so many students leave the video very early on? The student might have left

the video shortly after it (auto-)started, or the auto-play feature in the edX video player

inadvertently started a video. Misleading video titles or course navigation interfaces might

be another reason. A tip for content owners on YouTube analytics [55] states that viewers

leaving before 5-10 seconds probably means the video keyword or title might not accurately
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Figure 3-1: Longer videos exhibit higher dropout rates. Our linear regression model uses
the log-transformed video length (x-axis) to predict the dropout rate (y-axis). The model
fits the data well with r=0.55 with 95% CI = [0.50, 0.59].

represent the content. Additional analysis looking at the common page navigation paths of

these early-dropping students might reveal issues with the video title or course navigation

structure.

The dropout rate increases with video length (Figure 3-1). Linear regression shows that

the logarithmic value of the video length significantly predicted the dropout rate (b = 0.13,

t(848) = 32.22, p <0.01). The overall model with the logarithmic value of the video length

also predicted the dropout rate very well (adjusted R2 = 0.55, F(1, 848) = 1038, p <0.001).

This suggests that for a five-minute video, the predicted dropout is 53% (35% in the first

3%), whereas for a 20-minute video the rate goes up to 71% (47% in the first 3%). With

longer videos, students might feel bored due to a short attention span or experience more

interruption.

A recent analysis of edX data [59] shows that learner engagement drops significantly

if the video length is longer than 6 minutes. Their analysis differs from ours in that they
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Figure 3-2: Re-watching students tend to drop out more, which might mean that re-
watching students watch videos more selectively with a more specific need.

use viewing session length as engagement, as opposed to second-by-second dropout rates.

Our analysis can provide additional evidence to the finding that shorter videos are more

engaging because more students would drop out.

Another factor that might affect the dropout rate is whether the student watches the

video for the first time. Students that are re-watching a video might have more specific

information needs and selectively watch a video. Our analysis verifies this assumption as

can be seen in Figure 3-2: the dropout rate of re-watchers (78.6%, std=54.0) was much

higher than that of first-time watchers (48.6%, std=34.0). A Mann-Whitney’s U test shows

a significant effect (Z = -30.7, p <0.001, r = 0.74).

Finally, we look at how video production types affect the dropout rate by comparing

lecture videos and tutorial videos. Tutorial videos showed higher dropout rate (61.3%,

std=38.3) than lecture videos (54.1%, std=36.3). A Mann-Whitney’s U test shows a signif-

icant effect (Z = -5.29, p <0.001, r = 0.18). One explanation is that lecture videos contain

first-time introductions to concepts and sequential flow, whereas tutorial videos contain
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step-by-step instructions students can selectively review and follow along. The mean video

length was not significantly different between the two video types (p >0.05), limiting the

effect of video length in the result.

3.4 Analysis 2. Interaction Peaks

In addition to staying in a video or leaving, students also actively play, pause, or skip the

video to learn at their own pace. Uncovering meaningful patterns from these natural learn-

ing activities can provide an in-depth look at video learning on MOOCs. The temporal pro-

files of such patterns reveal time-specific interest, which might indicate student confusion,

pacing issues in the video, useful information presented visually, or important concepts.

Course instructors can refer to such information to attend to specific parts of a video. Com-

paring peak profiles between pedagogically different videos (lecture vs tutorial) can reveal

the difference in students’ consumption patterns, while comparison between watching con-

texts (first-time vs re-watching) might highlight different purposes in watching videos.

We investigate temporal peaks in the number of interaction events in particular, where

a significantly large number of students show similar interaction patterns during a short

time window. We use the following two peak definitions.

• A re-watching session peak is a sudden spike in the number of re-watching sessions

during a period inside a video. We exclude first-time sessions because they tend to be

more sequential. We instead focus on non-sequential, random access activities. Note

that this measure is not per unique student. A student repeatedly watching a part of a

video five times adds five to our measure.

• A play event peak is a sudden spike in the number of play events on the player.

These events occur when a student clicks the play button or scrubs the playhead to a

new position. We ignore autoplay events at the beginning of a video because they do

not represent student-initiated activity.
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Figure 3-3: Even after aggregating data into bins of one second, the data is noisy (green
curve). Kernel-based smoothing reduces noise in the data and helps salient patterns stand
out (black curve).

3.4.1 Method

Raw watching session and interaction data are noisy (green curve in Figure 3-3). Identify-

ing peaks in such noisy data both manually and automatically becomes difficult due to local

maxima and false peaks. Following the bin-summarize-smooth framework [164], we first

bin the data into one-second segments, which simplifies the computation and visualization.

We then count all points in each bin to represent an aggregate number of events in a bin. To

fight the noise and excessive variance in data and compensate for lost statistical power, we

then apply smoothing to the binned and aggregated data (black curve in Figure 3-3). The

smoothing technique we use is lowess (locally weighted scatterplot smoothing) [33], with

the smoothing parameter of 0.02 after testing various values. A kernel smoother such as

lowess is simple and efficient, works well with binned data [162], and is computationally

tractable.

After smoothing, we apply a peak detection algorithm to both re-watching session

counts and play event counts. The algorithm we use is a variant of the TwitInfo [111]

algorithm. It uses a weighted moving average and variance to detect unusually large num-
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Figure 3-4: The location of a peak is determined by three time points (start, peak, and
end). Width, height, and area determine the shape, sharpness, and intensity of the peak.

ber of events in time-series data, which applies well to the video context. We tested with

different parameters in the algorithm to fit the time scale of our analysis, which is much

shorter (the order of seconds and minutes) than what TwitInfo dealt with (hours and days).

One reason for using both re-watching and play counts is that they might capture dif-

ferent behaviors. We observe that video content includes both a time-specific event (e.g., a

visual transition from a talking head to a slide) and a coherent segment that spans a longer

period of time (e.g., a two-minute long explanation of a theorem). Play events capture a

more precise timing of an event in a video, generally resulting in sharper, spiky peaks. They

respond better to student activities at one-second granularity. Re-watching session counts

tend to capture segments that occur over a longer period of time better, generally resulting

in smoother, wider peaks.

When a re-watching session peak and a play event peak overlap, they point to a single

event. When two peak windows overlap, we pick the re-watch peak because re-watch

counts are always higher than play counts, possibly resulting in more informed peaks.

The features of a peak, such as width, height, and area, can indicate the strength of
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Video Group All Lecture Tutorial First timers Re-watchers

Peaks per Video 3.7 3.6 4.1 2.2 1.0
Normalized Height 7.7% 7.1% 10.2% 1.5% 3.1%
Normalized Width 2.7% 2.6% 3.1% 3.2% 3.7%
Normalized Area 4.1% 3.9% 4.8% 4.1% 4.7%

Table 3.2: Peak profile comparison reporting average values across all peaks detected for
each video group. Tutorial videos resulted in more peaks than lecture videos. Likewise, re-
watching sessions resulted in more peaks than first-time sessions. All differences between
lecture and tutorial, and first time and re-watcing were statistically significant.

students’ collective, time-specific interest. We compare these features between video types

and student contexts. Previous work considered similar constructs in modeling temporal

profiles of search queries [78]. A peak is characterized by descriptive properties as shown

in Figure 3-4. It includes both start and end time markers, which determine the width or

time duration of a peak. The peak point is the highest point between the [start, end] range,

which determines the height. Finally, the area under a peak is the sum of event counts

during the peak time window, which denotes the relative significance of a peak against

the entire video. Multiple peaks of differing profiles might appear within a video clip. In

reporting height, width, and area, we normalize the values by scaling between 0 and 1 to

address high variability in event counts and durations across videos. For width, height,

and area, we take a normalized range against the video duration, the maximum number of

events, and the sum of all event counts, respectively.

3.4.2 Peak Profile Comparison

We now explore peak profiles for different video styles and watching behaviors. Overall,

the mean number of peaks in a video was 3.7 (std=2.1). Of those, 2.2 (std=1.8) were re-

watch peaks, and 2.3 (std=1.5) of them were play event peaks, which includes 0.8 duplicate

peaks per video (i.e., play and re-watch peaks were overlapping). Considering that a mean

video length was 7.8 minutes, a peak is detected roughly every two minutes in a video.

Some videos exhibited as many as 11 peaks, while others did not show a notable peak.

Table 3.2 summarizes the results in this section.
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The mean width of a peak was 2.7% (std=3.5), and the median width was 9 seconds.

This means that peaks in our analysis generally spanned less than 10 seconds including the

rise and fall, which can point to highly time-specific events in a video. In the next section

we attempt to explain what kind of events might be responsible for a peak.

The mean of normalized peak height was 7.7% (std=10.4) of the maximum height. This

indicates that most peaks were quite small when compared against the maximum value of

the measure. For play events, the maximum height was autoplay events at the beginning

of the video, which gives a practical, comparative measure of the intensity of a peak. For

example, if 10,000 students watched a lecture video and a peak had a height of 50%, this

indicates that 5,000 more play button clicks were made within the peak range than in the

time span just before and after the peak.

Finally, the mean of normalized peak area was 4.1% (std=4.5). This value maps to the

activity dominance of a peak. A dominant single peak for a video might indicate that the

peak was the single most important point of interest in the video. Conversely, a video with

more peaks leaves relatively smaller area for individual peaks.

Lectures vs Tutorials

Tutorial videos generated stronger and more numerous peaks than lecture videos. The mean

number of peaks in tutorial videos was 4.1 (std=1.9), compared to 3.6 (std=2.0) in lecture

videos. A Mann-Whitney’s U test shows a significant effect (Z = -2.6, p <0.01, r = 0.09).

Furthermore, peaks in tutorial videos were wider in width (Z = -3.1, p <0.001, r = 0.06),

taller in height (Z = -7.5, p <0.001, r = 0.13), and larger in area (Z = -5.5, p <0.001, r =

0.10) than those in lectures. Where does this difference come from?

Tutorial videos generally contain step-by-step instructions about solving a problem or

using a tool. Many students follow along instructions from a tutorial at their own pace,

and peaks normally occur at the step boundary. For example, a statistics course included a

tutorial video on running a t-test using a statistics software package. In many cases, peaks

occurred when the instructor issued commands in the tool or explained a key step in the

solution, which might indicate that students re-watched these steps to make sure they follow

the steps correctly. On the other hand, lecture videos are less segmented in structure with
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more continuous flows. Our observations show that peaks in lecture videos often relate to

visual transitions in the video, such as from a slide to a talking head, or explanations of

important concepts, such as introducing a theorem. While these points of interest in lecture

videos attract many students to re-watch, the interaction peaks are not as sharp as in tutorial

videos.

First-timers vs Re-watchers

Re-watching sessions generated stronger and more numerous peaks than first-time sessions.

The mean number of peaks in re-watching sessions was 2.2 (std=1.7), whereas the mean

was only 1.0 (std=1.3) in first-time sessions. A Mann-Whitney’s U test shows a significant

effect (Z = -14.7, p <0.001, r = 0.35). Furthermore, re-watching session peaks were wider

in width (Z = -3.9, p <0.001, r = 0.07), taller in height (Z = -23.8, p <0.001, r = 0.45), and

larger in area (Z = -2.9, p <0.001, r = 0.05) than first-time ones.

First-time watchers might watch videos more sequentially, because they want to master

the material by watching through the lecture before diving deeper into specific parts. When

re-watching, students tend to watch videos more selectively. It is notable that differences

in peak height show a much higher effect size than differences in width and area. This sug-

gests that students selectively pick parts to re-watch rather than watch through sequentially.

3.5 Analysis 3. Five causes for peaks

The peak profile analysis explains what peaks look like and how frequently they occur in

different videos, but it does not reveal why they occur. We introduce a categorization of

student activities surrounding a peak, by combining the peak profile analysis with visual

content analysis. While our categorization is not conclusive, it provides an explanation

of which semantic and contextual aspects of video might be responsible for a peak. This

analysis suggests that no one reason can explain all peaks, and that video instructors should

respond to each peak differently.

Our informal observations suggest that visual transitions in the video are often asso-

ciated with a peak. A visual transition is a change between presentation styles shown in
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Peak Category All Lec. Tut.

Type 1. beginning of new material 25% 30% 12%
Type 2. returning to content 23% 25% 15%
Type 3. tutorial step 7% 0% 30%
Type 4. replaying a segment 6% 7% 1%
Type 5. non-visual explanation 39% 38% 42%

Number of videos 80 61 19
Peaks per video 3.6 3.6 3.5

Table 3.3: Five student activity types that lead to a peak are shown, along with their fre-
quency distribution as manually labeled by the authors. We sampled 80 videos and labeled
each peak to one of the activity types. Only Type 5 does not involve a visual transition.

a video. Presentation styles in our video set are slide, code, talking head, classroom view,

studio view, Khan-style tablet, and demo videos. We coded each visual transition with pre-

sentation styles before and after the transition, using the following categorization scheme,

which is slightly modified from Guo et al’s scheme [59]:

• Slide – PowerPoint slide presentation with voice-over

• Code – video screencast of the instructor writing code in a text editor, IDE, or

command-line prompt

• Talking head – close-up shots of an instructor’s head filmed at an office desk

• Classroom view – video captured from a live classroom lecture

• Studio view – instructor recorded in a studio with no audience

• Khan-style – full-screen video of an instructor drawing freehand on a digital tablet,

which is a style popularized by Khan Academy videos

• Demo video – playback of a video clip inside the main lecture video

Example transitions include changes from a slide to a talking head, a code editor to a

demo video, a lecture podium view to a slide, etc. These transitions are often added at the

production stage by video engineers, who mostly rely on their experiences to determine
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transition points. Our definition of visual transitions does not include incremental changes

within a single style, e.g., an instructor typing in a new line of code in the code editor,

adding an underline to highlight text, and walking a few steps in a classroom view.

3.5.1 Method

To explore the connection between visual transitions and interaction peaks, we apply a

visual analysis technique to complement the log analysis. We use an image similarity

metric that computes pixel differences between two adjacent frames to quantify the amount

of visual changes in the video. Our pipeline first samples a video frame every second,

computes the image similarity using a standard technique, Manhattan distance, in the RGB

space, and finally stores the pixel distance value. We visualize this data to aid the following

categorization process.

We sampled 80 videos out of 862 (9.3%) while keeping the balance between video

lengths, lectures vs tutorials, and production styles. This set included 20 videos from each

course.

The categorization process involved two phases. In the first phase, researchers watched

the selected videos, especially paying attention to the detected peaks. The goal was to

construct a set of categories for peaks, using the open card sorting method [146]. As the

researchers watched videos, they grouped peaks into rough categories based on common

properties, such as the existence of visual transitions before or after a peak window. They

discovered five groups in this generative process and named each. Three data streams were

visualized to help with the categorization process, namely play events (Figure 3-5 top),

re-watching sessions (Figure 3-5 middle), and the pixel differences (Figure 3-5 bottom). In

the second phase, a researcher labeled all peaks in the 80 videos to one of the categories

generated in the first phase.

3.5.2 Results

Overall, 61% of the categorized peaks involved a visual transition before, and/or after the

peak. The categories, their descriptions, and frequency are shown in Table 3.3. We now
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Figure 3-5: We visualize three streams of data to analyze interaction peaks in MOOC
videos. The top graph shows play events, the middle graph shows re-watching sessions,
and the bottom graph shows pixel differences over time. Detected peaks are marked with a
gray point. In this example, the detected peaks coincide with a spike in pixel differences,
which indicate a visual transition in video.

describe each student activity category in detail.

Type 1: starting from the beginning of a new material

In this category (25% of all peaks), students browse to the beginning of a new material,

such as a new concept, example, or theorem. A peak caused by such activity includes

a visual transition that precedes the peak. This indicates that students are interested in

the content that comes after the visual transition, which is often where new units start.

Students might want to review a confusing concept after mastering earlier ones, or re-visit

a theorem proof sequence. These peaks might indicate good points to cut the longer video
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Figure 3-6: This peak represents the start of a new concept. The instructor started pre-
senting a formal definition of a concept (admissibility) after changing the slide. The peak
occurred when this concept explanation started.

into shorter segments, because they correspond to the beginning of a semantically different

unit. Figure 3-6 shows an example from an AI course where a formal description of a

concept (admissibility) started after presenting a motivating idea.

Type 2: returning to missed content

In this category (23% of all peaks), students return to visual content that disappears shortly

after. A peak caused by such activity includes a visual transition that follows shortly after

the peak. Often, the content that disappears is slides, code snippets, or board notes, but

not talking heads or zoomed out views. An interpretation is that there is a pacing issue

in the video. The visual transition was maybe too abrupt, not giving enough time for

students to fully digest the content that disappeared. They need more time on the material,
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Figure 3-7: This peak represents students returning to see the code snippet slide that disap-
peared after transitioning into the talking head. An abrupt transition might not give students
enough time to comprehend what’s presented.

but the video view suddenly changed and prevented access to the material. Also, note

that what is shown during this peak type is often the final content that is complete, such

as fully working code or a complete bullet point list. Many instructors make slides that

advance progressively instead of showing everything at once to keep students’ attention

focused. When re-watching, students might want to skip to the final result without repeating

all intermediate steps. Figure 3-7 shows an example where the code snippet suddenly

disappeared and transitioned into the instructor talking.

Type 3: following a tutorial step

This category (7% of all peaks) is students following steps in the tutorial. Tutorials often

contain step-by-step instructions students can follow, in the form of issuing a command or
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Figure 3-8: This peak represents students returning to a procedural step demonstrating how
to run a command inside a statistics package. Students are more interested in following
along the steps than the result afterward, probably because they can see the same result in
their own application as well.

selecting a menu item from an application. Many students pause or re-watch right before

an action takes place, possibly trying to replicate the step in their own tool. Since this

was a recurring pattern in many of the tutorial videos, we assign a separate category. Fig-

ure 3-8 shows an example from a tutorial video where the instructor in the statistics course

demonstrated how to run a command from a statistics package.

Type 4: re-watching a brief segment

In this category (6% of all peaks), visual transitions are located both before and after the

peak. This indicates that students are interested in the content within the peak range. While

much less common than the other types, this type gives more specific information about

student behavior because reasons explaining both Type 1 and 2 can be applied here. Fig-



72 CHAPTER 3. IN-VIDEO DROPOUTS AND INTERACTION PEAKS

Figure 3-9: This peak represents a short range of interesting segment surrounded by visual
transitions before and after. The instructor launched a game application that demonstrates
the concept discussed. This engaging demo might have encouraged students to return to it.

ure 3-9 shows an example where the instructor briefly showed a demo application (during

peak), and explained an underlying concept before and after the demo.

Type 5: repeating a non-visual explanation

In this category (39% of all peaks), students return to parts of a video that have no visual

transitions nearby. What triggers a peak is non-visual activities in the video, such as a

verbal instruction with semantic importance. We note that in many cases these peaks rep-

resent instructors introducing an important concept, re-emphasizing what has already been

covered visually, or making a joke that results in a burst of laughter. Figure 3-10 shows an

example where a peak occurred within a single slide. Here the instructor of the AI course



3.5. ANALYSIS 3. FIVE CAUSES FOR PEAKS 73

Figure 3-10: This peak represents important remarks from an instructor, without any visual
transitions in the video. In this example the instructor was making an important point about
random actions in reinforcement learning, the key topic of this AI lecture.

explained the concept of taking random actions to force exploration in reinforcement learn-

ing, which was the main topic of the video.

Are there differences between peak types?

We compared normalized width, height, and area between peak types to see if peak cate-

gories, defined by the semantics of the video, map to differences in the peak profile. We

first compared peaks accompanying visual transitions (Type 1, 2, 3, 4) and peaks with non-

visual explanation (Type 5). A Mann-Whitney’s U test shows a significant effect of height

(Z = -3.0, p <0.01, r = 0.18) and area (Z = -1.9, p <0.05, r = 0.11), but not of width. This

shows that peaks were taller and larger in size when they had visual transitions nearby.

One explanation might be that visual transitions, occurring at the exact same time for all
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students, lead students to act similarly around them. On the other hand, start and end times

of a salient activity are less clear for non-visual explanations.

Next, we looked at differences between individual categories. A Kruskal Wallis test

revealed a significant effect of category on normalized height (χ2(4)=19.6, p <0.001). A

post-hoc test using Mann-Whitney tests with Bonferroni correction showed the significant

differences between Type 1 and Type 3 (p <0.01, r = 0.33), and between Type 3 and Type

5 (p <0.001, r = 0.32). This suggests that tutorial step peaks (Type 3) were significantly

taller than new material peaks (Type 1) or non-visual explanation peaks (Type 5). There

was no significant effect found for normalized width or area. One explanation might be that

tutorial steps have a clear timestamp and span a shorter period of time. For example, time

between a tutorial instructor typing a command and pressing enter can be very short. The

student needs to pause the video within a very short time range to capture the timing with

the full command entered. For new materials and non-visual explanations, a few seconds

of difference is not crucial, which might lead to smoother peaks.

3.6 Design Implications for MOOC Video Interfaces

The micro-level analysis of students’ video interaction introduced in this chapter can guide

the design of better video learning experiences. Our analysis shows that students interact

with MOOC videos differently, depending on the visual, pedagogical, and stylistic prop-

erties of the video. A primary finding from both the dropout and peak analyses is that

students selectively pick parts of videos to watch. And the parts they choose tend to con-

verge to form peaks. We argue that course instructors, video production engineers, platform

designers, and even students can benefit from such information. We present a set of design

implications from our results for different types of learners and videos addressed in this

chapter.

[authoring] Avoid abrupt visual transitions. Type 2 peaks (returning to missed con-

tent) are likely to indicate too fast or abrupt transitions. These peaks often accompany infor-

mative slides, which can be made available outside the video as a screenshot or thumbnail

for easier scanning and reviewing. Excessive visual transitions should be avoided because
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they might prevent students from referring to earlier content. A video interface can au-

tomatically generate a picture-in-picture or side-by-side view to retain access to earlier

content. Alternatively, the instructor figure may be overlaid on top of the content all the

time to avoid any transition at all.

[authoring] Make shorter videos. Long lecture videos lead to a higher dropout rate.

When determining points to segment long videos, Type 1 peaks can be useful points be-

cause students watch from the beginning of that segment.

[interface] Enable one-click access for steps in tutorial videos. Important steps in a

tutorial get clear peaks. These peaks can be used to automatically mark steps in a video,

making it easy for students to non-sequentially access these points without having to rely

on imprecise scrubbing. For example, ToolScape [89] is a tutorial video interface that adds

an interactive timeline below a video to allow step-by-step navigation.

[interface] Provide interactive links and screenshots for highlights. Type 2 peaks

(returning to missed content) suggest that missing content forces students to return. Provid-

ing static screenshots of the peak-creating informative frames might reduce the navigation

overhead for students. Video interfaces might even consider multi-track streams, show-

ing slide and instructor in separate channels that are available all the time. Type 5 peaks

attract students with non-visual information, and our observation suggests that instructors

make important points in these peaks. Interactive links to these points can be useful for

students willing to find them later, which is especially difficult due to the lack of visual

cues. Chapter 4 shows some of these ideas in a video player.

[interface] Consider video summarization for selective watchers. A common inter-

action pattern in our results is non-sequential and selective watching. Students re-watching

videos tend to non-sequentially seek their points of interest. Peaks can be used to effec-

tively summarize highlights from a video, which can be useful for students who re-watch

or skim through the content while auditing. Chapter 4 shows some of these ideas in a video

player.
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3.6.1 MOOC video analytics platform

Techniques presented in this chapter can provide stakeholders in a MOOC with richer data

about micro-level video interaction, which can help them make data-driven decisions about

planning, recording, editing, and revising videos. To support exploration of in-video inter-

action data, we built a prototype MOOC video analytics platform. In addition to showing

basic statistics per video, the enhanced video player synchronizes the video playhead with

an overlay time bar on the visualization (Figure 3-11). This interface enables visually con-

necting video content to points with salient patterns in the graph.

We expect to support the sensemaking process for course instructors, video production

engineers, and platform designers. Course instructors can use MOOC video analytics to re-

spond to students’ interest and confusion while a course is being offered. Further, they can

also use data-driven metrics to revise videos for the next offering of the course. Video pro-

duction engineers can better allocate their resources in the production effort. One concrete

use case is to avoid excessive visual transitions that lead to Type 2 peaks. Platform de-

signers can benefit from MOOC video analytics to enhance the video player interface. For

example, they can attach interactive bookmarks for peaks to improve in-video navigation.

While the analysis for this chapter was done offline after the courses were complete,

the analytics platform can also handle streaming events. This allows running our analytics

framework for currently active courses, so that instructors can address student confusion

inferred from the streaming video analytics during virtual office hours or in discussion

forums.

3.7 Limitations

While our analysis methods identified video navigation patterns, understanding why we see

these patterns is difficult. Because MOOCs do not have access to a broader learning context

of a student, log entries cannot accurately represent learners’ real intent (e.g., the same log

may be recorded for the two following cases: start playing a video and walk out of the

room, and start playing and pay attention). Also, video interactions might depend on other

pedagogical methods in a MOOC such as problem sets, discussion forums, and exams.
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Furthermore, presentation quality or storyline might also affect which parts of the video

students come back to watch, but our analysis does not incorporate such data. Finally, our

analysis does not consider different learner goals in MOOCs, such as completing, auditing,

and disengaging [92]. Per-group analysis of our techniques might reduce noise and help us

better reason about the dropout and peak results.

3.8 Conclusion

This chapter provides an in-depth look into how students interact with MOOC videos. We

analyze data from four live courses on edX, focusing on in-video dropout rates, interaction

peak profiles, and student activity categorization around peaks. We believe our data-driven

analytic methods can help improve the video learning experience.
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Figure 3-11: Our prototype video analytics dashboard supports synchronized video play-
back for various interaction measures.



Chapter 4

LectureScape: Data-Driven Navigation

of Educational Videos

This chapter presents the second example of passive learnersourcing, LectureScape, which

is a lecture video player powered by learners’ collective video interaction data. This chapter

has adapted, updated, and rewritten content from a year at UIST 2014 [85]. All uses of

“we”, “our”, and “us” in this chapter refer to coauthors of the aforementioned paper.

With an unprecedented scale of learners watching educational videos on online plat-

forms such as MOOCs and YouTube, there is an opportunity to incorporate data generated

from their interactions into the design of novel video interaction techniques. Chapter 3

introduced how interaction data can be used to understand learners’ collective video en-

gagement and help instructors improve their videos. The interaction data analysis also led

to a set of recommendations for better MOOC video design. This chapter takes a step

further, and attempts to implement and test some of these recommendations in a user inter-

face. The goal is to improve the video navigation and learning experience by exploring the

design space of data-driven interaction techniques. We introduce a set of techniques that

augment existing video interface widgets, including:

• a 2D video timeline with an embedded visualization of collective navigation traces

• dynamic and non-linear timeline scrubbing

• data-enhanced transcript search and keyword summary
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• automatic display of relevant still frames next to the video

• a visual summary representing points with high learner activity

To evaluate the feasibility of the techniques, we ran a laboratory user study with simu-

lated learning tasks. Participants rated watching lecture videos with interaction data to be

efficient and useful in completing the tasks. However, no significant differences were found

in task performance, suggesting that interaction data may not always align with moment-

by-moment information needs during the tasks.

4.1 Motivation and Contributions

Millions of people watch free educational videos online on platforms such as Khan Academy,

Coursera, edX, Udacity, MIT OpenCourseWare, and YouTube. For example, the “Ed-

ucation” channel on YouTube currently has over 10.5 million subscribers, and a typical

MOOC has thousands of video-watching learners. In addition, learners also take paid

video-centric courses on commercial platforms such as Lynda, Udemy, and numerous uni-

versity e-learning initiatives.

The server logs of these platforms contain fine-grained, second-by-second data of learn-

ers’ interactions with videos, which we refer to as interaction traces. This data is now being

used for real-time analytics to optimize business metrics such as viewer engagement time.

Researchers have also used this data to perform retrospective empirical analyses. For ex-

ample, video analytics studies on MOOCs have compared the effects of video production

methods on learner engagement [59] and identified common causes of peaks in learner

activity within videos (Chapter 3).

Interaction data provides a unique opportunity to understand collective video watching

patterns, which might indicate points of learner interest, confusion, or boredom in videos.

However, to our knowledge, researchers have not yet attempted to feed these patterns back

into the video navigation interface to support learners. While learners might have diverse

goals in navigating through a video, existing video interfaces do not provide customized

navigation support beyond scrubbing on a linear timeline slider with thumbnail previews
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Figure 4-1: This chapter presents three sets of novel interaction techniques to improve nav-
igation of educational videos. 1) Dynamic timelines (Rollercoaster Timeline, Interaction
Peaks, and Personal Watching Trace), 2) Enhanced in-video search (Keyword Search and
Interactive Transcript), 3) Highlights (Word Cloud, Personal Bookmarks, Highlight Story-
board). All techniques are powered by interaction data aggregated over all video watchers.

and synchronizing with a textual transcript. Adapting to collective video watching patterns

can lead to richer social navigation support [37].

This chapter explores the design space of navigation techniques for educational videos

that leverage interaction data. We introduce novel data-driven interaction techniques that

process, visualize, and summarize interaction data generated by many learners watching

the same video. For instance, in a typical MOOC, at least a few thousand learners watch

each video. Based on prior findings about learner intent and typical formats of educational

videos [59, 86], we have designed these techniques to support fluid and diverse video nav-

igation patterns. Typical video watching scenarios include:

• Rewatch: “Although I understand the high-level motivation, I didn’t quite get the

formal definition of ‘admissible heuristic’ the first time I watched this lecture. So I

want to rewatch the section explaining the formal definition.”

• Textual search: “I want to jump to where the instructor first mentioned the phrase

‘alpha-beta pruning.”’
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• Visual search: “I remember seeing this code example in a diagram somewhere in the

video. I want to find it again.”

• Return: “Hey, that was annoying! I don’t want to see the instructor’s talking head.

I’m not done looking at this PowerPoint slide yet. I want the slide back!”

• Skim: “This lecture seems somewhat trivial. I’ll skim to see if there’s something I

probably shouldn’t miss.”

Specifically, we developed interaction techniques to augment a traditional Web video

player with 1) a Rollercoaster timeline that expands the video timeline to a 2D space,

visualizes collective interaction traces of all learners, and dynamically applies non-linear

scrolling to emphasize interaction peaks, 2) enhanced in-video search that visualizes and

ranks occurrences on the timeline and recommends salient keywords for each video section,

and 3) a video summarization method that captures frames that are frequently viewed by

other learners. These techniques combine learners’ collective interaction traces with text

and visual content analysis.

We package all of these techniques together in LectureScape, a prototype Web-based

video interface shown in Figure 4-1. In a laboratory study with simulated search and skim-

ming tasks, we observed that participants employ diverse video navigation patterns enabled

by our techniques. Specifically, they noted that LectureScape helped them to quickly scan

the video and efficiently narrow down to parts to direct their focus. They also found in-

teraction data to be useful in identifying important or confusing pedagogical points within

videos. However, no significant differences were found in task performance, suggesting

that interaction data may not always align with moment-by-moment information needs

participants had for the study tasks.

This chapter makes the following contributions:

• a conceptual design approach for interaction techniques that leverages information

about other learners’ behavior to improve the video learning experience,

• a set of novel video interaction techniques powered by real log data from learners in

a MOOC platform, introducing 1) a 2D, non-linear timeline, 2) enhanced in-video

search, and 3) a data-driven video summarization method,
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• and an empirical evaluation of the techniques with learners, which enabled fluid and

diverse video navigation.

4.2 Design Goals

This work focuses on supporting video navigation patterns common in online education,

which differ from watching, say, a movie or TV show in a sequential, linear manner.

Our designs are informed by quantitative and qualitative findings from analyses of edu-

cational videos, which suggest that learners often re-watch and find specific information

from videos. A video clickstream analysis introduced in Chapter 3 identified interaction

peaks inside a video, of which 70% of automatically-detected peaks coincided with visual

and topical transitions. A challenge in using interaction data to support learning is that

the meaning of an interaction peak can be ambiguous (e.g., interest, confusion, or impor-

tance). In this chapter, we do not assume a specific meaning behind interaction peaks, but

do assume they are worth emphasizing regardless of the real cause. If a peak indicates im-

portance, it would make sense to highlight it for future learners. If it indicates confusion, it

may still make sense to emphasize so that learners would pay more attention.

To discover unsupported needs in lecture video navigation, we also conducted multiple

rounds of feedback sessions with learners using our initial prototypes. The data analysis

and interviews led to three high-level goals that informed our design of data-driven video

interaction techniques.

Provide easy access to what other learners frequently watched. Our observations

suggest that learners find it hard to identify and navigate to important parts of information-

dense educational videos. To help a learner make more informed decisions about which part

of the video to review, we leverage other learners’ interaction traces, especially interaction

peaks. We designed navigation techniques to emphasize these points of interest while the

learner visually scans the video or physically scrubs the timeline.

Support both personal and collective video summaries. To prepare for homework

assignments or exams, learners often take notes and watch videos multiple times to create

a meaningful summary. Since there are often thousands of learners watching each video,
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we explore ways to present collective interaction traces as an alternative summary to com-

plement each learner’s personal summary. We extend prior work on social navigation in

videos [121], history visualization, and revisitation mechanisms by supporting both manual

bookmarking and automatic personal and collective watching traces.

Support diverse ways to search inside of a video. In our formative studies, learners

described different ways they look for specific information inside a video. They would

rely on both textual cues (e.g., topic and concept names) and visual cues (e.g., an image

or a slide layout) to remember parts of the video. A more challenging case is when they

cannot remember what the cue was for their particular information need. This observation

inspired us to support both active search (e.g., when the learner has a clear search term),

and ambient recommendations (e.g., when the learner does not know exactly what to search

for). We designed techniques to enhance existing search mechanisms with interaction data,

which provide social cues to serve both search scenarios.

4.3 Data-Driven Video Navigation Techniques

We introduce three interaction techniques to improve navigation of educational videos: an

alternative timeline, search interface, and summarization method. Our main insight is to

use the non-uniform distribution of learner activity within a video to better support common

navigation patterns. Although the prototypes shown in this chapter use videos on edX, a

MOOC (Massive Open Online Course) platform, the techniques can be implemented for

other video platforms such as YouTube because they use only standard Web technologies.

Figure 4-2: The 2D Rollercoaster timeline that appears below each video instead of a
traditional 1D timeline. The height of the timeline at each point shows the amount of nav-
igation activity by learners at that point. The magenta sections are automatically-detected
interaction peaks.
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4.3.1 The Rollercoaster Timeline: 2D, Non-Linear Timeline

To help learners identify and navigate to important parts of the video, we introduce the

rollercoaster timeline. Unlike a traditional 1D timeline, the rollercoaster timeline is 2D

with an embedded visualization of second-by-second learner interaction data (Figure 4-2).

It visualizes the navigation frequency as a proxy of importance, as revealed by the behavior

of other learners, and modifies the timeline scrubbing behavior to make precise navigation

in important regions easier.

Navigation events are logged when the learner pauses and resumes the video, or nav-

igates to a specific point. The Rollercoaster timeline uses navigation event counts as the

vertical dimension. These counts are then applied lowess (locally weighted scatterplot

smoothing) [33] for smoothing, with the smoothing parameter of 0.02. The smoothing

process is identical to what has been described in Chapter 3. The Rollercoaster timeline

can also visualize other kinds of interaction events, including the number of viewers, re-

watchers, unique viewers, or play or pause button clicks.

2D timeline

If the learner wants to jump to a specific point in the video, he can click on any point in the

2D timeline, which will capture the x coordinate of the click and update the playhead. The

embedded peak visualization shows the intensity and range of each peak, and the overall

distribution of the peaks within a video. Since interaction peaks are highlighted in magenta

and span a wider region than other points, the learner can visually review and navigate

to the commonly revisited parts in the video. We use the Twitinfo [111] peak detection

algorithm to detect peaks in the server log data.

Non-linear scrubbing with the phantom cursor

This timeline also enables dynamic, non-linear scrubbing, which takes advantage of inter-

action peaks. The basic idea is to apply friction while scrubbing around peaks, which leads

to prolonged exposure so that learners can get a more comprehensive view of the frames

near the peaks even when scrubbing quickly. Friction also makes it easier to precisely se-
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Figure 4-3: Non-linear scrubbing in the Rollercoaster timeline. To draw the learner’s
attention to content around interaction peaks, the phantom cursor decelerates scrubbing
speed when the cursor enters a peak range.

lect specific frames within the range, since it lowers the frame update rate. It is an example

of control-display ratio adaptation [15, 71, 148], dynamically changing the ratio between

physical cursor movement and on-screen cursor movement.

Previous techniques have applied elastic, rubber band-like interactions to scrubbing [72,

115, 139, 143]. Our technique differs in that 1) it uses interaction data instead of content-

driven keyframes, 2) elasticity is selectively applied to parts of the timeline, and 3) the

playhead and the cursor are always synchronized, which reduced user confusion in our

pilot studies.

When the mouse cursor enters a peak region while dragging, the dragging speed slows

down relative to the dragging force, creating the sense of friction. The faster the dragging,

the weaker the friction. We achieve this effect by temporarily hiding the real cursor, and

replacing it with a phantom cursor that moves slower than the real cursor within peak

ranges (Figure 4-3). The idea of enlarging the motor space around targets is inspired by

Snap-and-Go [9].
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Figure 4-4: The real-time personal watching traces visualize segments of the video that
the learner has watched.

Personal watching trace visualization

When we observed pilot study users navigating videos with our timeline, a common desire

was to keep track of which parts of the video they personally watched, which might not

align with the aggregate interaction peaks collected over all learners. Thus, we added an-

other stream under the timeline to visualize each learner’s personal watching traces. Previ-

ous research has separated personal and collective history traces to support GUI command

selection [117], and added history indicators to a document scrollbar [3], which improved

task performance in information finding. We extend these approaches to video navigation

by using personal watching traces to support revisitation. Once the learner pauses the video

or jumps to a new point, the current watching segment is visualized on a separate track be-

low the timeline (Figure 4-4). Clicking on a generated segment replays the segment. More

recent segments are displayed with higher opacity to further emphasize them over older

ones. These traces can be stored on a per-user basis to help learners quickly find points of

interest when they return to re-watch a video at a later date.

4.3.2 Keyword Search and Visualization

To better support searching for relevant information inside of a video, we use interaction

data to power keyword search and transcript analysis. Instead of weighing all occurrences

equally, our search technique rewards results in sections of the video where more learners

watched. Since key concepts often appear dozens of times in a video, this feature helps

the learner prioritize which parts of the video to review. Furthermore, to support novice

learners who do not necessarily have the vocabulary to translate their information needs

into a direct search query, we suggest major topics discussed in each section of the video in
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a word cloud. These topics serve as a keyword summary that can help learners recognize

and remember the main topics discussed in each video.

Figure 4-5: Our interaction data-driven keyword search brings in more context for the
learner to decide where to focus on when searching for a keyword. For instance, the learner
can visually check the distribution of when the lecturer said the keyword in the current
video, which is useful in seeing where it was heavily discussed versus simply introduced.

Keyword search

If the learner has a keyword to search for, she can type it in the search field (top right in

Figure 4-5), which searches over the full transcript of a video clip, and displays results both

on the timeline and in the transcript. When the learner enters a search query, the timeline

dynamically displays the search results instead of the default interaction visualization (see

Figure 4-6). In this way, the timeline serves as a dynamic space for supporting different

learner tasks by changing the peak points it emphasizes. Each result renders as a pyramid-

shaped distribution, whose range is the duration of the sentence the word belongs to and

whose peak is where the term is spoken. Figure 4-7 shows how hovering over the result

displays a tooltip, and clicking on the result plays the video from the beginning of the
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sentence that includes the search term. This sentence-level playback provides the learner

with more context surrounding the term.

Figure 4-6: The search timeline appears below the video after each search and replaces
the Rollercoaster timeline when a search term is entered. It visualizes the positions of
search results, as well as the relative importance of each. Here the high peak in the middle
indicates both that it contains the search term and that lots of learners watched that part.

Figure 4-7: Hovering on a search result displays a tooltip with the transcript sentence that
contains the search term. Clicking on the result plays the video starting at the beginning of
the sentence to assist the learner with comprehending the surrounding context.

Because key terms are repeated many times even during a short video, it can be hard

for the learner to locate the most important search result. For example, in a 5-minute edX

video on iterative algorithms, “variable” is mentioned 13 times, and “state” 12 times. We

use interaction data to rank search results, with the assumption that parts of the video more

frequently watched by previous learners are likely to reflect the current learner’s interest.

Our ranking algorithm analyzes learner activity around a search result and assigns a weight

to the result, giving higher weights to sentences that were viewed by more learners. Each

match within a sentence is then highlighted in the tooltip and the transcript. To support

quick visual inspection of search results, we represent the computed score as the height

on the timeline (gray peaks in Figure 4-6). If the term was mentioned multiple times in a
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sentence, we convolve the distributions for all occurrences and assign the maximum score

to it.

Figure 4-8: The word cloud displays automatically-extracted topics for the currently visi-
ble section of the video, providing a keyword-based summarization of the video. Clicking
on any word triggers a search for it.

Word cloud: topic summarization and visualization

To address the low visual variation between frames in many videos and to help learners

recognize and remember major topics in the clip, we use word clouds to dynamically dis-

play keywords in different segments of the video. We use TF-IDF (term frequency-inverse

document frequency) scores for extracting keywords and weighing their importance. To

compute the TF-IDF scores for the keywords in a transcript, we define a document as the

transcription sentences between two consecutive interaction peaks, and the background cor-

pus as the collection of all video transcripts in the entire course. This user activity-driven

mechanism extracts self-contained segments from each video.

The visualization is positioned directly above the video as a panel consisting of three

word clouds (see Figure 4-8), and gets updated at every interaction peak. The center cloud

corresponds to the present segment being viewed, and two additional clouds represent the

previous and upcoming segments, respectively. These displays are intended to give a sense

of how lecture content in the current segment compares to that of surrounding segments. To

bring focus to the current word cloud, we de-emphasize the previous and next word clouds

by decreasing their opacity and word size relative to the current cloud. The text color is

randomly assigned from a categorical color scheme provided by d3 1, which is based on

an ordinal scale. Clicking on any keyword in the cloud triggers a search using that term,

visualizing the occurrences in the transcript as well as on the timeline.

1https://github.com/mbostock/d3/wiki/Ordinal-Scales

https://github.com/mbostock/d3/wiki/Ordinal-Scales
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4.3.3 Video Summarization with Highlights

To enable a quick overview of important points, we present a strip of visual highlights

of selected video frames. Consistent with our design goal of providing access to both

personal and collective interaction traces in the timeline, we support both collective and

personal highlights. Collective highlights are captured by interaction peaks, while personal

highlights are captured by the learner bookmarking a frame of interest.

Interaction peak highlights

We capture interaction peaks and provide one-click access to them to support common

watching patterns such as jumping directly to these points. The storyboard-style display of

the peak frames allows the learner to visually scan the video’s progress (Figure 4-1). These

highlights are visually-oriented, while the word cloud of Figure 4-8 is text-oriented.

Figure 4-9: Our pinning algorithm analyzes interaction peaks and visual transitions in the
video to display a smaller static frame (on the left) next to the video (on the right). Learners
can manually pin any frame as well.
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Pinning video frames

Most existing video players display only one frame at a time. This ubiquitous interface is

sensible for the narrative structure of general-purpose videos such as TV shows, where a

sequential flow is natural. However, educational videos are information-heavy, and active

learning involves skimming and scrubbing [86]. For example, an instructor might verbally

refer to the formula she described in the previous PowerPoint slide, but the formula might

no longer be available on screen. A learner who wants to refer to that formula has to

scrub the video timeline to go back to a frame with the relevant formula slide. To support

watching patterns that are not easily supported by existing players, our video player pins a

relevant frame next to the video stream for easy reference (Figure 4-9).

Our video player automatically determines a frame to pin. A relevant pinned frame

should 1) not be identical to what is currently shown in the video, 2) include important

content that is worth referencing, and 3) contain readable content such a textual slide or

technical diagram, not merely a static frame of the instructor’s face or students sitting in a

classroom. Otherwise, juxtaposing a static frame next to the video might cause distraction

and visual clutter. To meet these requirements, our pinning algorithm uses both interaction

peaks and visual transitions. It automatically pins an interaction peak frame if there is a

visual transition shortly after the peak. Checking for a visual transition ensures that the

pinned frame is not visually identical to the frames right after the transition. To meet the

requirement 3), we simply check whether the slide is visually static, with the assumption

that the instructor’s face or classroom capture signals jiggle in terms of pixel differences

between frames. A more robust implementation can use a trained video parser such as

EdVidParse [140]. jAlso, pinning an interaction peak frame ensures that the frame at least

includes content viewed by many others.

The learner can also manually pin a frame by clicking the pin icon attached to each

peak frame, which replaces the current pinned frame with the learner’s. While the system

attempts its best effort to show the most relevant frame at a given time, the learner also has

the flexibility to control what gets displayed.
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Figure 4-10: The learner can add a labeled bookmark, which is added to the highlights
stream below the video for visual preview and revisitation.

Personal bookmarks

While peak frames might be a reasonable summary of a video, individual learners might

have summarization needs that are not captured by the collective traces. The learner can add

personal bookmarks by clicking on the “Add Bookmark” button. The learner can see the

captured frame at the point of click and add their own label for future reference (Figure 4-

10). Once a bookmark is saved, it is added to the highlights stream, chronologically ordered

along with other bookmarks and interaction peak highlights. This view allows the learner

to choose between naturally-formed interaction peaks by other learners as well as self-

generated bookmarks.

4.4 LectureScape: Web-Based Prototype

This section introduces LectureScape, a prototype lecture video player that combines all of

the techniques in a unified interface (see Figure 4-1). The main goal of LectureScape is to

give learners more control and flexibility in deciding how to navigate educational videos.

LectureScape features the video player in the main view, along with the Rollercoaster time-

line below the video and the word cloud above it. The interactive transcript is in the right

sidebar, and the highlights are positioned at the bottom of the screen. The search box at the

top enables keyword search. The widgets are all collapsible to reduce visual clutter and to

hide unused features.

We implemented LectureScape using standard Web technologies: HTML5, CSS3, and

JavaScript. The word cloud and Rollercoaster timeline are rendered with D3 [17]. Our
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customized HTML5 video player does not require additional re-encoding or streaming,

and is independent of the encoding or streaming method used. It only requires interaction

data for each video to activate the data-driven interaction techniques. Our data processing

pipeline formats interaction traces and generates visual assets from an existing video.

First, three data streams are stored for each video: interaction data, TF-IDF results

on the transcript, and visual transition data. Our peak detection algorithm runs on page

load, which allows dynamic parameter tuning. Peak detection is run on both the interac-

tion data and visual transition data, which returns interaction peaks and shot boundaries,

respectively.

Second, the system generates thumbnail images for each second of a video. Because

many of our interactions require displaying a thumbnail of a video frame on demand, low

latency in image loading is crucial in supporting seamless interactions. It is especially

important for educational videos whose visual changes are more subtle than in movies or

TV shows, and whose on-screen information matters for learners to read and comprehend.

Upon a page load, the system preloads all thumbnails for a video. When a learner drags the

timeline, instead of loading the video each time a dragging event is triggered, our player

pauses the video and displays an overlay screenshot. This results in much less latency and

smoother dragging, similar to the benefits reported by Swift [116].

Consistent with previous research [86] and guidelines for online streaming video plat-

forms [55], many viewers drop out early on in the video due to misfires and unwanted

autoplays. This results in high volumes in interaction data at the beginning of the video,

which might not be useful yet outscale the rest in quantity. To mitigate these effects, the

Rollercoaster timeline excludes the interaction data within the first 3% of the video duration

in setting the maximum y-axis value for the visualization.

4.5 Evaluation

To assess the feasibility of using interaction data to enhance video navigation, we con-

ducted a user study comparing video players with and without our data-driven interaction

techniques. We explored three research questions:
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• RQ1. How do learners navigate lecture videos with LectureScape in typical kinds of

learning tasks such as search and summarization?

• RQ2. How do learners interpret interaction data presented in LectureScape?

• RQ3. Are LectureScape’s features useful and learnable?

4.5.1 Study Design

The study was a within-subjects design, where each learner used both LectureScape and a

baseline interface that stripped off all interaction data-related features from LectureScape.

The baseline interface still included the interactive transcript and preview thumbnails on

hover, to emulate what is available in platforms such as edX or YouTube. To maintain

uniformity in look and feel for our comparative study, the baseline interface had the same

layout and visual design as LectureScape.

Learners performed three types of learning tasks for lecture videos: visual search, prob-

lem search, and summarization. These tasks represent realistic video watching scenarios

from our observations, and match common evaluation tasks used in the literature on video

navigation interfaces [38, 128].

• Visual search tasks involved finding a specific piece of visual content in a video.

These tasks emulated situations when a learner remembers something visually and

wants to find where it appeared in a video. For example, for a video about tuples

in Python, a visual search task asked: “Find a slide where the instructor displays

on screen examples of the singleton operation.” Targets were slides that appeared

briefly (less than 20 seconds) in the video. We mixed tasks that had targets around

interaction peaks and non-peaks to investigate how LectureScape fares even when

the target is not near a peak. For all visual search tasks, we provided learners with

only the video timeline (linear timeline in baseline, 2D timeline in LectureScape) and

removed all other features (e.g., transcript, word cloud) to restrict video navigation

to timelines only. Learners were told to pause the video as soon as they navigated to

the answer.

• Problem search tasks involved finding an answer to a given problem. These tasks
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emulated a learner rewatching a relevant video to answer a discussion forum question

or to solve a homework problem. For example, for a video about approximation

methods, a problem search task asked: “If the step size in an approximation method

decreases, does the code run faster or slower?” Learners were asked to find the part

in the video that discussed the answer, and then state their answer.

• Summarization tasks required learners to write down the main points of a video

while skimming through it. We gave learners only three minutes to summarize videos

that were seven to eight minutes long, with the intent of motivating learners to be

selective about what parts to watch.

All videos used in the study were from 6.00x, an introductory computer science course

on edX. Interaction data was collected from server logs during the first offering of the

course in fall 2012, which included 59,126 learners and 4,491,648 video clickstream events.

The course has been recurring every semester since then. Each of the eight tasks in the study

used different videos to minimize learning effects. We also chose videos of similar length,

difficulty, and style within each task type to control for differences across videos.

4.5.2 Participants

We recruited 12 participants (5 male, mean age 25.6, stdev=11.0, max=49, min=18) who

were currently enrolled in the introductory CS course (either on edX or on campus) to

which the videos belong. The on-campus version of the course shares the same curricu-

lum but is taught by different instructors. For recruitment, we posted a flyer on the course

discussion forum on edX and the on-campus course website, both with consent from in-

structors. Furthermore, we picked videos for lessons given earlier in the semester, so that

participants were likely to have already been exposed to that material before coming to our

study, as is often the case in video re-watching scenarios. Four participants were enrolled

in a current or previous edX offering of the course, while six were taking the on-campus

version. Two had previously registered in the online offering but were currently taking the

on-campus course. Participants received $30 for their time.
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4.5.3 Procedure

A 75-minute study session started with 15-minute tutorials on both interfaces. Next, partic-

ipants performed eight learning tasks: four visual search tasks, two problem search tasks,

and two summarization tasks. Each task used a different video, so the total of eight videos

were used in the study and by each participant. After each task, they answered questions

about confidence in their answer and prior exposure to the video. After each task type,

we interviewed them about their task strategy. For each task type, we counterbalanced the

order of the interfaces and the assignment of videos to tasks. After completing all the tasks,

participants completed a questionnaire on the usability of each interface and their experi-

ence and opinions about interaction data. All click-level interactions were logged by the

server for analysis. The tasks, links to the videos used, and the survey are presented in

Appendix A.

4.6 Results

4.6.1 RQ1. Navigation Patterns for Search and Summarization

In visual search, most participants in the baseline 1D timeline sequentially scanned the

video using thumbnail previews or dragging. In contrast, participants using the 2D Roller-

coaster timeline often jumped between interaction peaks to reach the general area of the

answer. But the latter strategy did not help in many cases because interaction data repre-

sents collective interests in a video, not results for a search query.

For the two out of four tasks where the search targets were located near interaction

peaks, it took participants in both conditions similar amounts of time (LectureScape: µ=85

seconds, σ=51, baseline: µ=80, σ=73). This difference was not statistically significant

with the Mann-Whitney U (MWU) test (p>0.4, Z=-0.9). For the other two tasks where

the search targets were outside of an interaction peak range, it took participants in the

LectureScape condition longer to complete (µ=117, σ=44) than in the baseline condition

(µ=90, σ=50), although the MWU test showed no statistical significance (p>0.1, Z=-1.5)

The longer time might be due to the fact that many participants navigated by clicking
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on the peaks to see if the answer existed around peaks. Nonetheless, results show that

LectureScape did not adversely affect task completion times even when the answer was not

in peak ranges.

Because problem search tasks required some understanding of the context to provide

an answer, participants often tackled the problem by narrowing down to a section of the

video that mentioned relevant concepts and then watching the section until they found

the answer. In the process of narrowing down to a video section, most participants in the

baseline condition relied on searching for keywords (10 out of 12) and clicking on transcript

text (11 / 12), while participants with LectureScape used search (6 / 12) and clicking on

transcript text (6 / 12) less frequently, and additionally clicked on interaction peaks on the

timeline (6 / 12) or highlights below the video (6 / 12). Over all problem search tasks,

participants in the LectureScape condition completed them slightly faster (µ=96, σ=58)

than participants in the baseline condition (µ=106, σ=58), although the difference was not

significant (MWU test, p=0.8, Z=0.3).

In comparison to the other tasks, participants in summarization tasks did not rely on

keyword search (1 / 12 in both conditions), because the task required them to quickly scan

the entire video for the main points. Many participants with LectureScape scanned the peak

visualization, word cloud, and highlights for an overview, and clicked on interaction peaks

(9 / 12) or highlights (6 / 12) for a detailed review. In one video, all six participants with

LectureScape visited an interaction peak almost at the end of the video (located at 6:35

in the 7:00 clip). This slide summarized main ideas of variable binding, which was the

topic of the video. In contrast, in the baseline condition, only one learner navigated to this

section of the video. Most participants spent majority of their time in the earlier part of the

video in the baseline condition.

Despite inconclusive evidence on quantitative differences in task completion time, par-

ticipants believed that they were able to complete the tasks faster and more efficiently with

LectureScape than with the baseline interface. Answers to 7-point Likert scale questions

on the overall task experience revealed significant differences between the two interfaces in

participants’ belief in speed (LectureScape: µ=5.8, Baseline: µ=4.8) and efficiency (Lec-

tureScape: µ=6.1, Baseline: µ=4.8). The MWU test shows that both differences were
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significant at p<0.05 for these questions.

4.6.2 RQ2. Perception of Interaction Data

Generally, participants’ comments about watching videos augmented by others’ interaction

data were positive. Participants noted that “It’s not like cold-watching. It feels like watch-

ing with other students.”, and “[interaction data] makes it seem more classroom-y, as in

you can compare yourself to what how other students are learning and what they need to

repeat.”

In response to 7-point Likert scale questions about the experience of seeing interaction

data, participants indicated that they found such data to be “easy to understand” (µ=5.9),

“useful” (5.3), “enjoyable” (5.2), that interaction peaks affected their navigation (5), and

that interaction peaks matched their personal points of interest in the video (4.4).

In an open-ended question, we asked participants why they thought interaction peaks

occurred. Common reasons provided were that these parts were “confusing” (mentioned

by 8 / 12), “important” (6 / 12), and “complex” (4 / 12). Identifying the cause of a peak

might be useful because they can enable more customized navigation support. While most

participants mentioned that highlighting confusing and important parts would be useful,

some noted that personal context may not match the collective patterns. One said, “If it

were a topic where I was not very confident in my own knowledge, I would find it very

helpful to emphasize where others have re-watched the video. If however it was a topic I

was comfortable with and was watching just to review, I would find it frustrating to have

the physical scrolling be slowed down due to others’ behavior while watching the video.”

4.6.3 RQ3. Perceived Usability of LectureScape

Many participants preferred having more options in navigating lecture videos. As one

learner noted, “I like all the extra features! I was sad when they got taken away [for the

baseline condition].” Also, when asked if the interface had all the functions and capabilities

they expected, participants rated LectureScape (6.4) significantly higher than the baseline

interface (4.3) (p<0.001, Z=-3.2 with the MWU test).
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However, some expressed that LectureScape was visually complex, and that they would

have liked to hide some widgets not in use at the moment. They found it more difficult to

use than the baseline (ease of use: 4.7 vs. 6.3, p<0.001, Z=2.7 with the MWU test). This

perception leaves room for improvement in the learnability of the system. A participant

commented: “[LectureScape] is fairly complex and has a lot of different elements so I

think it may take a bit of time for users to fully adjust to using the interface to its full

potential.” These comments are consistent with our design decision to support collapsible

widgets to reduce visual clutter, although the version of LectureScape used in the study had

all features activated for the purpose of usability testing.

Due to the limitations of a single-session lab study, few participants actively used per-

sonal bookmarks or personal history traces. A longitudinal deployment might be required

to evaluate the usefulness of these features.

4.6.4 Navigation Pattern Analysis

Now we provide a detailed analysis of how participants navigated videos during the study.

In all tasks, most participants’ strategy was to start with an overview, and then focus on

some parts in detail. Participants alternated between the overview and focus stages until

they found what they were looking for, or covered all major points in the video for summa-

rization.

While the high-level strategy was similar in the two video interfaces, participants’ nav-

igation patterns within each of the two stages differed noticeably. With LectureScape,

participants used more diverse options for overview and focused navigation, making more

directed jumps to important points in the video. With the baseline interface, most partici-

pants sequentially scanned the video for overview and clicked on the timeline or transcript

for focusing. Another common pattern in the baseline condition was to make short and

conservative jumps on the timeline from the beginning of the video, in order not to miss

anything important while moving quickly.

In the overview stage, most participants tried to scan the video to grasp the general

flow and select a few points to review further. One learner described her strategy with
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LectureScape in this stage: “having this idea of ‘here’s where other people have gone

back and rewatched, being able to visually skim through very quickly and see titles, main

bullet points, and following along with the transcript a little bit as well was definitely

helpful.” Although visual scanning did not result in click log entries, our interviews with

participants confirm that it was a common pattern. They pointed out three main features in

LectureScape that supported overview:

• the 2D timeline with an overall learner activity visualization: “I could use the 2D

overlay to scroll through... I think I took a quick scan through and saw the general

overview of what was on the slides.”

• highlight summaries with a strip of screenshots: “They would get me close to the

information I needed. They also made it easier to quickly summarize.”

• the word cloud with main keywords for sections in the video: “I just looked at the top

keywords, then I watched the video to see how [the instructor] uses those keywords.”

After scanning for an overview, participants chose a point in the video to watch further.

All of the methods described above provide a single-click mechanism to directly jump

to an “important” part of the video. Participants reviewed data-driven suggestions from

LectureScape to make informed decisions. The log analysis reveals that participants using

LectureScape made direct jumps such as clicking on a specific point in the timeline or a

highlight 8.4 times on average per task, in contrast to 5.6 times in the baseline condition.

In the focus stage, participants watched a segment in the video and reviewed if content

is relevant to the task at hand. In this stage they relied on methods for precise navigation:

scrubbing the timeline a few pixels for a second-by-second review, and re-watching video

snippets multiple times until they fully comprehend the content. With LectureScape, par-

ticipants had options to use the slowed-down scrubbing around peaks in the rollercoaster

timeline, automatic pinning of the previous slide, and sentence-level playback in search. To

navigate back to the previously examined point, participants frequently used timestamped

anchors attached to search results, interaction peaks, and highlights.

In summary, with LectureScape, participants used more navigation options in both the

overview and focus stages. A learner commented that “[LectureScape] gives you more
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options. It personalizes the strategy I can use in the task.” They had more control in which

part of the video to watch, which might have led them to believe that they completed the

tasks faster and more efficiently.

4.7 Discussion

Availability of interaction data: Discussion throughout this chapter assumes the avail-

ability of large-scale interaction data. With modern Web technologies, clickstream logging

can be easily added with APIs for video event handling.

There remain unanswered questions around interaction data, such as “Will using the

data-driven techniques bias the data so that it reinforces premature peak signals and ig-

nores other potentially important ones?”, and “How many data points are required until

salient peaks and patterns emerge?” Our future work will address these questions through

a live deployment on a MOOC platform such as edX. We will also explore other types of

interaction data such as active bookmarking and content streams such as voice to enrich

video-based learning.

Adaptive video UI: The data-driven techniques introduced in this chapter open oppor-

tunities for more adaptive and personalized video learning experiences. In this chapter, we

demonstrated how collective viewership data can change the video interface dynamically,

influencing the physical scrubbing behavior, search ranking algorithm, and side-by-side

frame display. We envision future video UIs that adapt to collective usage. Also, incorpo-

rating interaction data can lead to personalized video learning. Because interaction data is

likely to represent an average learner, comparing personal history traces against collective

traces may help model the current user more accurately and improve personalization.

Beyond MOOC-style lecture videos: While this chapter used MOOC-style lecture

videos for demonstration, we believe our techniques can generalize to other types of ed-

ucational videos such as programming tutorial screencasts, how-to demonstration videos,

and health education videos. We expect to apply the techniques introduced in this chapter

to these videos.



4.8. CONCLUSION 103

4.8 Conclusion

This chapter introduces a novel concept of designing video interaction techniques by lever-

aging large-scale interaction data. We present three sets of data-driven techniques to demon-

strate the capability of the concept: 2D, non-linear timeline, enhanced in-video search, and

a visual summarization method. In a lab study, participants found interaction data to draw

attention to points of importance and confusion, and navigated lecture videos with more

control and flexibility.

Ultimately, the design techniques we have presented provide enriched alternatives to

conventional video navigation. We envision engaging a community of learners in creating

a social, interactive, and collaborative video learning environment powered by rich com-

munity data.
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Chapter 5

ToolScape: Crowdsourcing Step Labels

for How-to Videos

This chapter presents the first example of active learnersourcing, ToolScape, which extracts

step-by-step instructions from an existing how-to video. This chapter has adapted, updated,

and rewritten content from a paper at CHI 2014 [89]. which combines and extends the ideas

proposed in two Extended Abstracts at CHI 2013 [83, 127]. All uses of “we”, “our”, and

“us” in this chapter refer to coauthors of the aforementioned papers.

Millions of learners today use how-to videos to master new skills in a variety of do-

mains. But browsing such videos is often tedious and inefficient because video player

interfaces are not optimized for the unique step-by-step structure of such videos. This re-

search aims to improve the learning experience of existing how-to videos with step-by-step

annotations.

We first performed a formative study to verify that annotations are actually useful to

learners. We created ToolScape, an interactive video player that displays step descriptions

and intermediate result thumbnails in the video timeline. Learners in our study performed

better and gained more self-efficacy using ToolScape versus a traditional video player.

To add the needed step annotations to existing how-to videos at scale, we introduce a

novel crowdsourcing workflow. It extracts step-by-step structure from an existing video,

including step times, descriptions, and before and after images. We introduce the Find-

Verify-Expand design pattern for temporal and visual annotation, which applies clustering,



106 CHAPTER 5. TOOLSCAPE: CROWDSOURCING STEP LABELS FOR HOW-TO VIDEOS

text processing, and visual analysis algorithms to merge crowd output. The workflow does

not rely on domain-specific customization, works on top of existing videos, and recruits

untrained crowd workers. We evaluated the workflow with Mechanical Turk, using 75

cooking, makeup, and Photoshop videos on YouTube. Results show that our workflow can

extract steps with a quality comparable to that of trained annotators across all three domains

with 77% precision and 81% recall.

5.1 Motivation and Contributions

How-to videos on the web have enabled millions of learners to acquire new skills in pro-

cedural tasks such as folding origami, cooking, applying makeup, and using computer

software. These videos have a unique step-by-step structure, which encourages learners

to sequentially process and perform steps in the procedure [157]. While most text- and

image-based tutorials (e.g., webpages) are naturally segmented into distinct steps, how-to

video tutorials often contain a single continuous stream of demonstration. Because com-

prehensive and accurate step-by-step information about the procedure is often missing, ac-

cessing specific parts within a video becomes frustrating for learners. Prior research shows

that higher interactivity with the instructional content aids learning [46, 156], and that the

completeness and detail of step-by-step instructions are integral to task performance [44].

To better understand the role of step-by-step information in how-to videos, we ran a for-

mative study where learners performed graphical design tasks with how-to videos. For this

study, we designed ToolScape, an interactive how-to video player that adds step descrip-

tions and intermediate result thumbnails to the video timeline. Learners using ToolScape

showed a higher gain in self-efficacy and rated the quality of their own work higher, as

compared to those using an ordinary video player. Moreover, external judges gave higher

ratings to the designs produced by learners using ToolScape.

Providing such navigation support for how-to videos requires extracting step-by-step

information from them. One solution is to ask instructors to include this information at tu-

torial generation time, but this adds overhead for instructors and does not solve the problem

for existing videos. Another approach uses automatic methods such as computer vision.
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Figure 5-1: Our crowdsourcing workflow extracts step-by-step information from a how-to
video with their descriptions and before/after images. It features the Find-Verify-Expand
design pattern, time-based clustering, and text/visual analysis techniques. Extracted step
information can be used to help learners navigate how-to videos with higher interactivity.

Previous research [7, 138] has shown success in limited domains with extensive domain-

specific customization. When working with “videos in the wild”, however, vision-based

algorithms often suffer from low-resolution frames and a lack of training data. A scal-

able solution applicable beyond limited task domains and presentation formats is not yet

available.

To address the issues of high cost or limited scalability with existing methods, we in-

troduce a crowdsourcing workflow for annotating how-to videos, which includes the Find-

Verify-Expand design pattern shown in Figure 6-1. It collects step-by-step information

from a how-to video in three stages: (1) find candidate steps with timestamps and text de-
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scriptions, (2) verify time and description for all steps, and (3) expand a verified step with

before and after images. The workflow does not rely on domain-specific knowledge, works

on top of existing videos, and recruits untrained, non-expert crowd workers. For quality

control, the workflow uses time-based clustering, text processing, and visual analysis to

merge results and deal with noisy and diverse output from crowd workers.

To validate the workflow with existing how-to videos, we asked crowd workers on Me-

chanical Turk to annotate 75 YouTube how-to videos spanning three domains: cooking,

makeup, and graphics editing software. Results show that the crowd workflow can ex-

tract steps with 77% precision and 81% recall relative to trained annotators. Successfully

extracted steps were on average 2.7 seconds away from ground truth steps, and external

evaluators found 60% of before and after images to be accurately representing steps.

The contributions of this chapter are as follows:

• A how-to video player interface and experimental results showing that increased in-

teractivity in a video player improves learners’ task performance and self-efficacy.

• A domain-independent crowd video annotation method and the Find-Verify-Expand

design pattern for extracting step-by-step task information from existing how-to videos.

• A novel combination of time-based clustering, text processing, and visual analysis

algorithms for merging crowd output consisting of time points, text labels, and im-

ages.

• Experimental results that validate the workflow, which fully extracted steps from

75 readily available videos on the web across three distinct domains with a quality

comparable to that of trained annotators.

5.2 Efficacy and Challenges of Video Annotation

To motivate the design of our crowdsourcing workflow for how-to video annotations, we

first performed a formative study to (1) verify that annotations are actually useful to learn-

ers, and (2) reveal the challenges of manually annotating videos and show the need for a

more scalable technique.
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Figure 5-2: Progress in many how-to videos is visually trackable, as shown in screenshots
from this Photoshop how-to video. Adding step annotations to videos enables learners to
quickly scan through the procedure.

5.2.1 Annotations on How-To Videos

How-to videos often have a well-defined step-by-step structure [58]. A step refers to a

low-level action in performing a procedural task. Literature on procedural tasks suggests

that step-by-step instructions encourage learners to sequentially process and perform steps

in the workflow [157] and improve task performance [44]. Annotations can make such

structure more explicit. In this chapter, we define annotation as the process of adding step-

by-step information to a how-to video. In determining which information to annotate, we

note two properties of procedural tasks. First, for many domains, task states are visually

distinct in nature, so progress can be visually tracked by browsing through a video (Fig-

ure 5-2). Examples include food in cooking videos, a model’s face in makeup videos, and

an image being edited in Photoshop videos. Second, how-to videos contain a sequence of

discrete steps that each advance the state of the task (Figure 5-3). Our annotation method

uses these two properties to accurately capture a sequence of steps, extracting timestamps,

textual descriptions, and before and after images for each step.

We manually created a corpus of annotations for 75 how-to videos in three procedural

task domains: cooking, applying makeup, and using Photoshop. We used this corpus to

create our interface in the formative study, and ground truth data for evaluating our crowd-

sourcing workflow. We collected videos from YouTube’s top search results for “[domain]

[task name]” (e.g., “cooking samosa”, “Photoshop motion blur”).
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Figure 5-3: How-to videos often contain a series of task steps with visually distinct before
and after states. Here the author applied the “Gradient map” tool in Photoshop to desaturate
the image colors.

5.2.2 ToolScape: Step-Aware Video Player

To display step annotations, we created a prototype video player named ToolScape. ToolScape

augments an ordinary web-based video player with a rich timeline containing links to

each annotated step and its respective before and after thumbnail images (Figure 5-4).

ToolScape is a Javascript library that manages a timestamped list of steps and before/after

images, which can connect to any embedded video player with a “play from this time point”

Javascript API call.

In the timeline, the top and bottom streams represent annotated steps and thumbnail

images from the video, respectively (Figure 5-4(a), (c)). Clicking on a step or image moves

the video player’s slider to 5 seconds before the moment it occurred. The 5-second buffer,

determined from pilot testing, helps learners catch up with the context preceding the indi-

cated moment. Finally, ToolScape supports annotations of “dead times” at the beginning

and end of videos (Figure 5-4(b)), which often contain introductory or concluding remarks.

Pilot user observations showed that learners often skip to the main part of the tutorial. In

our manually annotated video corpus, on average, 13.7% of time at the beginning and 9.9%

at the end were “dead times” with no task progress.

5.2.3 Formative Study Design

To assess the effects of step annotations, we ran a formative study on novice Photoshop

learners watching how-to videos on image manipulation tasks. We compared the expe-

riences of learners using ToolScape and a baseline video player without the interactive

timeline. We hypothesized that interacting with step annotations provided by ToolScape
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Figure 5-4: ToolScape augments a web-based video player with an interactive timeline.
Annotations are shown above the timeline (a), screenshots of intermediate states are shown
below the timeline (c), and the gray regions at both ends (b) show “dead times” with no
meaningful progress (e.g., waiting for Photoshop to launch).

improves both task performance and learner satisfaction. Specifically:

H1 Learners complete design tasks with a higher self-efficacy gain when watching

how-to videos with ToolScape.

H2 Learners’ self-rating of the quality of their work is higher when watching with

ToolScape.

H3 Learners’ designs when watching with ToolScape are rated higher by external

judges.

H4 Learners show higher satisfaction with ToolScape.

H5 Learners perceive design tasks to be easier when watching with ToolScape.
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In addition to external ratings (H3), our measures of success include self-efficacy (H1)

and self-rating (H2). In the context of how-to videos, these measures are more significant

than just user preference. Educational psychology research shows that self-efficacy, or

confidence in application of skills, is an effective predictor of motivation and learning [6,

172]. Positive self-rating has also been shown to accurately predict learning gains [147].

Finally, we chose not to count errors made in repeating tutorial steps as in [28], because

our goal was to help users explore and learn new skills in open-ended design tasks.

Participants: We recruited twelve participants through university mailing lists and online

community postings. Their mean age was 25.2 (σ = 3.2), with 8 males and 4 females.

Most rated themselves as novice Photoshop users, but all had at least some experience with

Photoshop. They received $30 for up to two hours of participation, on either a Mac or PC.

Tasks and Procedures: Our study had 2 x 2 conditions: two tasks each using ToolScape

and baseline video players. We used a within-subject design with interface, task, and order

counterbalanced. Each participant performed two image manipulation tasks in Photoshop:

applying retro effect and transforming a photo to look like a sketch. In both interface

conditions, we provided participants with the same set of how-to videos; the interface was

the only difference. In addition, we disallowed searching for other web tutorials to ensure

that any effect found in the study comes from the interaction method, not the content.

After a tutorial task covering all features of the video player interface, we asked par-

ticipants self-efficacy questions adapted from Dow et al. [41], whose study also measured

participants’ self-efficacy changes in a design task. The questions asked: On a scale of 1

(not confident at all) to 7 (very confident), how confident are you with. . .

• solving graphic design problems?

• understanding graphic design problems?

• applying design skills in practice?

• incorporating skills from video tutorials in your design?

Next, participants attempted two 20-minute image manipulation tasks in Photoshop,

with instructions shown in Figure 5-5. Participants could freely browse and watch the 10

how-to videos we provided (with annotations in the ToolScape condition). After each task,
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Figure 5-5: These task instructions are shown before the participant starts working on their
image manipulation task. It includes a description of the effect to be implemented and a
before-and-after example image pair.

we asked questions on task difficulty, self-rating, and interface satisfaction. The questions

in the survey are presented in Appendix B.

We also asked the self-efficacy questions again to observe any difference, followed by

a 15-minute open-ended interview.

Finally, we asked four external judges to evaluate the quality of all transformed images

by ranking them, blind to user and condition. They ranked the images from best to worst,

based on how well each participant accomplished the given task.

5.2.4 Formative Study Results

H1 (higher self-efficacy for ToolScape) is supported by our study. For the four self-efficacy

questions, we take the mean of the 7-point Likert scale ratings as the self-efficacy score.

The participants’ mean initial score was 3.8; with the baseline video player, the score after
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Figure 5-6: Rank-ordered designs created by the participants in the formative study. For
each image, the top label displays the rank of the image and the condition it was created in
(either ToolScape or Baseline). The mean rankings were lower in ToolScape (5.7) than in
Baseline (7.3), which maps to higher quality designs.

the task was 3.9 (+0.1) whereas with ToolScape the score was 5.2 (+1.4), which meant

that learners felt more confident in their graphical design skills after completing tasks with

ToolScape. (For H1, H2, and H4, differences between interfaces were significant at p<0.05

using a Mann-Whitney U test.)

H2 (higher self-rating for ToolScape) is supported. Participants rated their own work

quality higher when using ToolScape (mean rating of 5.3) versus baseline (mean of 3.5).

H3 (higher external judge rating for ToolScape) is supported. The overall ranking was

computed by taking the mean of the four judges’ ranks. The mean rankings (lower is better)

for output images in the ToolScape and Baseline conditions were 5.7 and 7.3, respectively.

A Wilcoxon Signed-rank test indicates a significant effect of interface (W=317, Z=-2.79,

p<0.01, r=0.29). Furthermore, nine of the twelve participants produced higher-rated im-

ages with ToolScape. The ranking method yielded high inter-rater reliability (Krippen-

dorff’s alpha=0.753) for ordinal data. Figure 5-6 shows all the designs created by partici-
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pants.

H4 (higher satisfaction with ToolScape) is supported. Mean ratings for ToolScape and

Baseline were 6.1 and 4.5, respectively.

H5 (easier task difficulty perception for ToolScape) is not supported: The mean ratings

for ToolScape and Baseline were 4.0 and 3.7, respectively. Combined with H2 and H3, this

might indicate that participants did not find the tasks easier yet still produced better designs

with greater confidence.

In conclusion, ToolScape had a significant effect on learners’ belief in their graphical

design skills and output quality. They also produced better designs as rated by external

judges. Note that participants were watching the same video content in both conditions.

Thus, the video annotation browsing interface affected design outcomes. Participants es-

pecially enjoyed being able to freely navigate between steps within a video by clicking on

annotations.

5.2.5 Lessons for Video Browsing Interfaces

The features of ToolScape that provided higher interactivity and non-sequential access were

highly rated and frequently used. In participants’ responses to the 7-point Likert scale

questions on the usability of interface features, the time-marked image thumbnails (6.4)

and step links (6.3) were among the highest rated, as well as the graying out of “dead

times” with no workflow progress (6.5). Participants noted, “It was also easier to go back

to parts I missed.”, “I know what to expect to get to the final result.”, and “It is great for

skipping straight to relevant portions of the tutorial.”

All participants frequently used the ability to click on timeline links to navigate directly

to specific images and steps. They clicked the interactive timeline links 8.9 times on aver-

age (σ = 6.7) in a single task. We also analyzed the tracking log, which records an event

when the user clicks on an interactive link or a pause button, or drags the playhead to an-

other position. The learners watched videos less linearly with ToolScape: The ToolScape

condition recorded 150 such events, versus only 96 in the Baseline condition. In ToolScape,

107 out of 150 events were interactive link clicks and 43 were pause button clicks or direct
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scrubbing on the player. These findings indicate that interactive links largely replaced the

need for pause or scrubbing, and encouraged the stepwise navigation of the procedure.

5.2.6 Lessons for How-To Video Annotation

The study results suggest that annotated step information makes how-to videos much more

effective for learners. However, the bottleneck is in obtaining the annotations. Here are

some lessons from our experience annotating videos by hand:

• Extracting step information from how-to videos involves detecting timing, generating

a natural language description of a step, and capturing before and after states.

• It often requires multi-pass watching, which adds to task complexity. Before know-

ing what each step is, the annotator cannot extract before and after thumbnail images.

This experience supports a design choice to split the work into multiple stages so that

in each stage, the annotator’s attention is focused on a single, simple task.

• Hand annotation is time-consuming. Roughly three times the original video length

was required by trained annotators to annotate each how-to video.

• Timing detection is difficult. Sometimes there is an interval between when a step is

spoken and demonstrated. Also, if the goal is to find a starting time of a step, the

annotator has to watch, verify, and scroll back to mark as a valid step.

These lessons informed the design of our crowdsourced how-to video annotation method,

which we now present.

5.3 Crowdsourcing Workflow: Find-Verify-Expand

Using lessons from our formative study, we designed a three-stage crowdsourcing work-

flow for annotating how-to videos with procedural steps, timings, textual descriptions, and

before and after thumbnail images. This workflow works with any how-to video regard-

less of its domain, instructional style, and presentation. It also collects annotations with

untrained crowd workers (e.g., workers on Mechanical Turk).
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Figure 5-7: In the Find stage, the crowd worker adds new steps to the timeline by clicking
on the “New Instruction” button.

Inspired by crowd design patterns that segment a bigger task into smaller micro-tasks [11],

our workflow decomposes the annotation task into three stages and each video into shorter

segments. This design addresses the task complexity and multi-pass overhead problems of

manual annotation.

We developed a generalizable crowd workflow pattern called Find-Verify-Expand

(Figure 6-1) for detecting temporal and visual state changes in videos, such as steps in

a how-to video, highlights from a sports game, or suspicious incidents from a surveillance

video. The unique Expand stage captures surrounding context and causal relationships

(e.g., before/after images for a step in a how-to video) by expanding on the detected event

(e.g., a step in a how-to video). To better handle crowd output coming from timing de-

tection and image selection, we apply clustering algorithms and text and visual analysis

techniques to intelligently merge results from workers.
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Figure 5-8: Upon clicking on the “New Instruction” button, a popup window asks the
worker to describe what the step is about in free-form text.

5.3.1 Stage 1: Find Candidate Steps

This crowd task collects timestamps and text descriptions for possible steps from a video

segment. While watching the video, the worker adds a step by clicking on the “New In-

struction” button every time the instructor demonstrates a step (Figure 6-3). Each time the

worker clicks on the button, the task prompts the worker to describe the step in free-form

text (Figure 5-8). The same segment is assigned to three workers, whose results get merged

to create candidate steps.

Pre-processing: A video is segmented into one-minute chunks. We learned from pilot

runs that longer video segments lead to lower annotation accuracy toward the end and

slower responses on Mechanical Turk. However, a drawback in using segmented video is

the possibility of missing steps near segment borders. We address this issue by including a

five-second overlap between segments, and attaching the final segment to the prior one if it

is shorter than 30 seconds.

Task Design: For quality control, the task first ensures that the user has audio by giving

a test that asks the worker to type in a word spoken from an audio file. Our pilot runs

showed that labeling accuracy drops significantly when the worker does not listen to audio.

Secondly, we disable the Submit button until the video playhead reaches the end to ensure

that the worker watches the entire segment. Finally, when the worker clicks on the “New

Instruction” button, the video pauses and a dialog box pops up to ask what the step was. Our

initial version simply added a tick on the timeline and continued playing without pausing or

asking for a label. But this resulted in workers clicking too many times (as many as 100 for
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Figure 5-9: Our clustering algorithm groups adjacent time points into a candidate step. It
further adds a potential cluster as a candidate, which might turn out to be a proper step once
checked in the Verify stage. This inclusive strategy mitigates the effect of clustering errors.

a 60-second chunk) without thinking. The prompt adds self-verification to the task, which

encourages the worker to process the workflow by each step. The prompt also includes an

example label to show the format and level of detail they are expected to provide (Figure 5-

8).

Post-Processing: The workflow intelligently merges results from multiple workers to

generate step candidates. To cluster nearby time points given by different workers into a

single step, we use the DBSCAN clustering algorithm [45] with a timestamp difference

as the distance metric. The clustering idea is shown in Clusters 1 and 2 in Figure 5-9.

The algorithm takes ε as a parameter, which is defined by the maximum distance between

two points that can be in a cluster relative to the distance between farthest points. We

train ε once initially on a small set of pilot worker data and ground truth labels. Our tests

show that the values between 0.05 and 0.1 yield high accuracy, regardless of domain or

video. We configured the algorithm to require at least two labels in every cluster, similar to

majority voting among the three workers who watched the segment. We considered other

clustering algorithms such as K-Means, but many require the number of clusters as an input
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parameter. In video annotation, the number of steps is neither known a priori nor consistent

across videos.

Depending on videos and parameters, the DBSCAN algorithm might over-generate

(false positive) or under-generate (false negative) clusters. We bias the algorithm to over-

generate candidate steps (‘potential cluster’ in Figure 5-9) and aim for high recall over high

precision, because the first stage is the only time the workflow generates new clusters. We

improve the initial clusters in three ways, with the goal of higher recall than precision. First,

we take into account the textual labels to complement timing information. The clustering

initially relies on workers’ time input, but using only time might result in incorrect clusters

because steps are distributed unevenly time-wise. Sometimes there are steps every few

seconds, and other times there might be no step for a minute. We run a string similarity

algorithm between text labels in border points in clusters, to rearrange them to the closer

cluster. Second, we break down clusters that are too large by disallowing multiple labels

from one worker to be in a cluster. Finally, if there are multiple unclustered points within ε

between clusters, we group them into a candidate cluster. For each cluster, we take a mean

timestamp as the representative time to advance to the Verify stage.

5.3.2 Stage 2: Verify Steps

Here the worker’s verification task is to watch a 20-second clip that includes a candidate

step and textual descriptions generated from the prior stage, and vote on the best description

for the step (Figure 6-4). The workflow assigns three workers to each candidate step, whose

votes are later merged.

Pre-processing: For each of the candidate steps from Stage 1, the workflow segments

videos into 20-second clips around each step (10 seconds before and after).

Task Design: To prevent workers from selecting the first result without reviewing all

options, we randomize the order of options presented each time. We also lowercase all

labels to prevent capitalized descriptions from affecting the decision. Also, the Submit

button becomes clickable only after the worker finishes watching the 20-second clip.

In addition to candidate text descriptions, two additional options are presented to work-
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Figure 5-10: The Verify stage asks the worker to choose the best description of a candidate
step. The options come from workers in the Find stage. Additional default options allow
the worker to either suggest a better description or mark the step as invalid.

ers: “I have a better description”, which improves the step label, and “There is no instruc-

tion”, which filters out false positives from Stage 1.

Post-Processing: Two possible outputs of this stage are 1) finalizing the timestamp and

description for a valid step, or 2) removing a false step. The workflow uses majority voting

to make the final decision: If two or more workers agreed on a description, it becomes

the final choice. If workers are split between three different options, it checks if some of

the selected text descriptions are similar enough to be combined. We first remove stop

words for more accurate comparisons, and then apply the Jaro-Winkler string matching

algorithm [76]. If the similarity score is above a threshold we configured with initial data,

we combine the two descriptions with a longer one. If not, it simply picks the longest one

from the three. The decision to pick longer description for tie-breaking comes from a pilot

observation that longer descriptions tend to be more concrete and actionable (e.g., “grate

three cups of cheese” over “grate cheese”).
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Figure 5-11: The Expand stage asks the worker to choose the best before and after images
for a step. The worker visually reviews the thumbnail options and clicks on images to
decide.
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5.3.3 Stage 3: Expand with Before and After Images for Steps

This final stage collects the before and after images of a step, which visually summarize

its effect. This stage captures surrounding context and causal relationships by expanding

on what is already identified in Find and Verify. The worker’s task here is to watch a 20-

second video clip of a step, and select a thumbnail that best shows the work in progress

(e.g., food, face, or Photoshop image) before and after the step (Figure 6-5). The workflow

assigns three workers to each step.

Pre-processing: This stage uses a 20-second video clip of a step verified in Stage 2, and

uses its final text label to describe the step. It creates thumbnails at two-second intervals to

present as options, 10 seconds before and after the step.

Task Design: Our initial design asked workers to click when they see good before and

after images, but this resulted in low accuracy due to variable response time and the lack

of visual verification. We then simplified the task to a multiple choice question. Selecting

from static thumbnail images makes the task easier than picking a video frame.

Post-Processing: Similar to the Verify stage, we apply majority voting to determine the

final before and after images. For merging and tie breaking, we use Manhattan distance, an

image similarity metric that computes pixel differences between two images.

5.4 Evaluation

We deployed our annotation workflow on Mechanical Turk and evaluated on:

• Generalizability: Does the workflow successfully generate labels for different types

of how-to tasks in different domains with diverse video production styles?

• Accuracy: Do collected annotations include all steps in the original video, and avoid

capturing too many (false positive) or too few (false negative)? How do textual de-

scriptions generated by crowd workers compare to those generated by trained anno-

tators?
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Figure 5-12: Our evaluation uses the Hungarian method to match extracted and ground
truth steps with closest possible timestamp within a 10-second window size. Then we
compute precision and recall, which indicate if our workflow over- or under-extracted steps
from ground truth.

5.4.1 Methodology

We used our workflow and Mechanical Turk to fully extract step information from the

75 how-to videos in our annotation corpus, with 25 videos each in cooking, makeup, and

graphics editing software (Photoshop). We did not filter out videos based on use of sub-

titles, transitions, or audio, to see if our annotation workflow is agnostic to presentation

styles. Out of 75 videos in our set, 7 did not have audio, and 27 contained text overlays.

For each domain, we picked five tasks to cover diverse types of tasks: Cooking – pizza

margherita, mac and cheese, guacamole, samosa, and bulgogi; Makeup – bronze look,

reducing redness, smokey eyes, bright lips, and summer glow; Photoshop: motion blur,

background removal, photo to sketch, retro effect, and lomo effect. The mean video length

was 272 seconds, summing to over 5 hours of videos.

5.4.2 Results

Our evaluation focuses on comparing the quality of step information produced by our

crowdsourcing workflow against ground truth annotations from our corpus.



5.4. EVALUATION 125

Domain
From Turk-
ers

After Stage
1

After Stage
2

Ground
Truth

Cooking 64.0 21.0 19.5 17.9

Makeup 53.3 16.4 15.3 14.8

Photoshop 43.5 12.5 12.2 12.4

All 53.6 16.7 15.7 15.0

Table 5.1: The mean number of steps generated by the workflow in each stage. At the
end the workflow extracted 15.7 steps per video, which is roughly equivalent to 15.0 from
ground truth. Stage 1 clusters the original Turker time points, and Stage 2 merges or re-
moves some.

Stage 1. Time only Stage 2. Time + Text

Domain Precision Recall Precision Recall

Cooking 0.76 0.89 0.77 0.84

Makeup 0.72 0.8 0.74 0.77

Photoshop 0.81 0.82 0.79 0.79

All 0.76 0.84 0.77 0.81

Table 5.2: When considering time information only, recall tends to be higher. When con-
sidering both time and text descriptions, incorrect text labels lower both precision and
recall, but removing unnecessary steps in Stage 2 recovers precision.

Domain Mean Distance (sec) Stdev

Cooking 2.20 2.03

Makeup 3.37 2.39

Photoshop 2.52 2.24

All 2.66 2.26

Table 5.3: The mean time distance between extracted steps and ground truth steps was
only 2.7 seconds on average, for all the steps that had a matching ground truth step. This
means that the time-based clustering (Figure 5-9) accurately detected step timings.
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The Turk crowd and trained annotators (two co-authors with educational video research

experience) generated similar numbers of steps (Table 5.1). In Stage 1, 361 one-minute

video segments were assigned to Turkers, who generated 3.7 candidate steps per segment,

or 53.6 per video. Clustering reduced that to 16.7 steps per video. Stage 2 further removed

over-generated steps, resulting in 15.7 per video, which is nearly equivalent to the ground

truth of 15 steps per video.

Precision indicates how accurate extracted steps are compared to ground truth, while

recall shows how comprehensively the workflow extracted ground truth steps (Figure 5-

12). We present precision and recall results considering only the timing of steps (Stage 1),

and both the timing and the textual description accuracy (Stage 2). For matching crowd-

extracted steps to ground truth steps, we use the Hungarian method [97] whose cost matrix

is filled with a time distance between steps.

Evaluating Stage 1: Find

We consider only precision and recall of times in the Stage 1 evaluation because final

textual descriptions are not yet determined. Detecting the exact timing of a step is not

straightforward, because most steps take place over a time period, and verbal and physical

steps are commonly given with a time gap.

To more accurately account for the timing issue, we set a highest threshold in time

difference that accepts a Turker-marked point as correct. We set the threshold to 10 seconds,

which indicates that a step annotation more than 10 seconds off is discarded. This threshold

was based on heuristics from step intervals in our corpus: We hand-annotated, on average,

one step every 17.3 seconds in our video corpus (mean video length / number of steps in

ground truth = 272/15.7), so a maximum 10-second difference seems reasonable.

The mean distance between ground truth steps and extracted steps (ones within 10 sec-

onds of the ground truth) was only 2.7 seconds (Table 5.3). This suggests that for matched

steps, the time-based clustering successfully detected the timing information around this

distance. When considering only time accuracy, our workflow shows 0.76 precision and

0.84 recall (Table 5.2).
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Evaluating Stage 2: Verify

Here we combine the accuracy of both timing and text descriptions. Precision for this stage

captures what fraction of steps identified by the workflow are both placed correctly on the

time line and whose description reasonably matches the ground truth. The analysis shows

0.77 precision and 0.81 recall over all the videos (Table 5.2).

For text accuracy measurement, we use the string similarity algorithm to see if a sug-

gested description is similar enough to a description from ground truth. We apply the same

threshold as what we configured in the workflow for tie breaking in the Verify stage. The

precision and recall both go down when the text similarity condition is added, but precision

recovers from the post-processing of steps in this stage. Two enhancements contribute to

this recovery: removing steps that workers indicated as “no instruction” from the task, and

merging nearby steps that have identical descriptions.

In 76% of the steps, two or more Turkers agreed on a single description. For the rest,

the tie breaking process determined the final description. For 13% of the steps, Turkers

provided their own description.

Evaluating Stage 3: Expand

This evaluation should judge if crowd-selected before and after images correctly capture

the effect of a step. Because this judgment is subjective, and there can be multiple correct

before and after images for a step, we recruited six external human evaluators to visually

verify the images. We assigned two evaluators to each domain based on their expertise

and familiarity with the domain, and gave a one-hour training session on how to verify

before and after images. For each workflow-generated step, we presented an extracted

text description along with a before and after image pair. Their task was to make binary

decisions (yes / no) on whether each image correctly represents the before or after state of

the step.

We used Cohen’s Kappa to measure inter-rater agreement. The values were 0.57, 0.46,

0.38, in cooking, makeup, and Photoshop, respectively, which show a moderate level of

agreement [4]. Results show that on average, both raters marked 60% of before and after
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images as correct. At least one rater marked 81.3% as correct.

Cost, time, and tasks

We created a total of 8,355 HITs on Mechanical Turk for annotating 75 videos. With

three workers on each task and a reward of $0.07, $0.03, and $0.05 for Find, Verify, and

Expand, respectively, the average cost of a single video was $4.85, or $1.07 for each minute

of a how-to video. The Expand stage was more costly ($2.35) than the first two; thus,

time points and text descriptions can be acquired at $2.50 per video. The average task

submission time was 183, 80, and 113 seconds for Find, Verify, and Expand, respectively.

Results summary

In summary, our workflow successfully extracted step information from 75 existing videos

on the web, generalizing to three distinct domains. The extracted steps on average showed

77% precision and 81% recall against ground truth, and were 2.7 seconds away from ground

truth. Human evaluators found 60% of before and after images to be accurate.

5.5 Discussion and Limitations

We now discuss qualitative findings from the experiment, which might have practical im-

plications for future researchers designing crowd workflows.

Detecting precise timing of a step. We observed that Turkers add new steps with

higher latency than trained annotators, resulting in Turker-labeled time points being slightly

later than those by annotators for the same step. The trained annotators often rewinded a

few seconds to mark the exact timing of a step after seeing the step, whereas most Turkers

completed their tasks in a single pass. While this might be a limitation of the workflow,

our results show that a reasonable window size mitigates such differences. For improving

timing accuracy, time-shifting techniques [105] can be explored.

Handling domain and video differences. Extraction accuracy in our workflow was

consistent across the three domains with different task properties. This finding validates our

domain-agnostic approach based on the general properties of procedural tasks. Photoshop
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videos were often screencasts, whereas cooking and makeup videos were physical demon-

strations. Cooking videos contained higher number and density of steps than makeup or

Photoshop videos, while Photoshop and makeup videos often had longer steps that re-

quired fine-grained adjustments and tweaking. Also, some videos were studio-produced

with multiple cameras and high-quality post-processing, while others were made at home

with a webcam. Our workflow performed robustly despite the various differences in task

properties and video presentation styles.

Extracting steps at different conceptual levels. Video instructors present steps at dif-

ferent conceptual levels, and this makes it difficult to keep consistent the level of detail in

Turkers’ step detection. In a makeup video, an instructor said “Now apply the bronzer to

your face evenly”, and shortly after applied the bronzer to her forehead, cheekbones, and

jawline. While trained annotators captured this process as one step, our workflow produced

four, including both the high-level instruction and the three detailed steps. Turkers gener-

ally captured steps at any level, but our current approach only constructs a linear list of

steps, which sometimes led to redundancy. Previous research suggests that many procedu-

ral tasks contain a hierarchical solution structure [23], and we plan to extend this work to

hierarchical annotation.

5.6 Conclusion

This chapter presents a scalable crowdsourcing workflow for annotating how-to videos.

The Find-Verify-Expand pattern efficiently decomposes the complex annotation activity

into micro-tasks. Step information extracted from the workflow can enable new ways to

watch and learn from how-to videos. We also present ToolScape, an annotation-enabled

video player supporting step-by-step interactivity, which is a potential client of this work-

flow. Our lab study shows the value of accessing and interacting with step-by-step in-

formation for how-to videos. Participants watching videos with ToolScape gained higher

self-efficacy, rated their own work higher, and produced higher-rated designs.
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Chapter 6

Crowdy: Learnersourcing Subgoal

Labels for How-to Videos

This chapter presents the second example of active learnersourcing, Crowdy, which learn-

ersources section summaries of a how-to video. This chapter has adapted, updated, and

rewritten content from a paper at CSCW 2015 [163], which extends the idea proposed in a

Works in Progress at CHI 2013 [88]. All uses of “we”, “our”, and “us” in this chapter refer

to coauthors of the aforementioned papers.

Websites like YouTube host millions of how-to videos, but their interfaces are not

optimized for learning. Previous research suggests that people learn more from how-to

videos when the videos are accompanied by outlines showing individual steps and labels

for groups of steps (subgoals) [23, 113]. We envision an alternative video player where

the steps and subgoals are displayed alongside the video. To generate this information for

existing videos, we use learnersourcing. To demonstrate this method, we deployed a live

website with a workflow for constructing subgoal labels implemented on a set of how-to

videos. A study with Turkers showed higher learning outcomes with Crowdy when com-

pared against the baseline video interface. The Crowdy group also performed as well as

the group that were shown expert-generated labels. For the four videos with the highest

participation, we found that a majority of learner-generated subgoals were comparable in

quality to expert-generated ones. Learners commented that the system helped them grasp

the material, suggesting that our workflow did not detract from the learning experience.
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Input Video + Steps
Stage 1: Subgoal Generation

Stage 2: Subgoal Evaluation

Stage 3: Subgoal Proofreading

Output SubgoalsWorkflow

Figure 6-1: We present a three-stage workflow to generate labels for groups of steps (sub-
goal labels) for how-to videos. This workflow is designed to engage people actively trying
to learn from the video to contribute the information.

6.1 Motivation and Contributions

Previous research [113] has shown that people learn better from videos if they are simul-

taneously presented with the subgoals, which capture meaningful conceptual pieces of the

procedure covered in the video (Figure 2-1). Presenting subgoals improves learning by re-

ducing learners’ cognitive load by abstracting away low-level details, and by encouraging

learners to self-explain why a set of steps have been grouped [23]. Ideally, to help people

learn better from how-to videos, a video interface could display a list of subgoals as learn-

ers watch a video. Traditionally, labeling subgoals requires domain experts and knowledge

extraction experts [24], but this process will not scale to the millions of existing how-to

videos on the web. While makers of how-to videos may eventually be convinced to add

subgoal labels for each video they create, we seek a scalable mechanism for improving the

learning experience for viewers of existing videos.

In this chapter, we turn to learners for help in generating subgoal labels at scale for

how-to videos on the web (Figure 6-1). We rely on active learnersourcing, a method for

human computation for gathering information from people trying to actively learn from a

video. Our solution is a three-stage workflow with microtasks for learners to complete as

they watch the videos. We hypothesize that learners will learn the material better with this

workflow while generating expert-quality subgoals at the same time.

In our learnersourcing workflow for constructing subgoal labels, as learners watch a

video, the video stops periodically and the system asks one of three kinds of questions.

The choice of question depends on how much information has already been gathered for

that section in the video, and the questions are designed to engage learners to reflect on the
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content.

• Generate: In the first stage of the workflow, learners are asked to summarize the pre-

ceding short video section, which generates candidate subgoal labels for the section.

• Evaluate: After enough candidate subgoals have been generated for a video section,

learners are routed to the second stage where they answer an automatically generated

multiple choice question. The question asks them to pick the best subgoal from

candidates contributed by previous learners. Learners’ answers are then used by the

system to evaluate the learner-generated subgoals.

• Proofread: In the third stage, learners make improvements to the most popular sub-

goal by considering its scope and language.

Once learners stop making changes to a subgoal, we can consider it final and future

learners can be presented a final list of subgoals when watching the video.

The contributions of this chapter are as follows:

• An implementation of a three-stage learnersourcing workflow to generate high-quality

subgoal labels from how-to videos in a scalable way.

• Results from a study demonstrating the pedagogical benefits of participating in the

learnersourcing workflow.

• Results from an in-the-wild study demonstrating the workflow’s effectiveness in gen-

erating high-quality subgoals. 14 out of 17 subgoals had at least one out of four eval-

uators rate the learner-generated subgoal label as equal to or better than the expert-

generated label.

• Results from interviews with learners who participated in the in-the-wild study sug-

gesting that the system helped them pay attention to videos and grasp the material

better.
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6.2 Learnersourcing Subgoal Labels

In order to generate subgoal labels for how-to videos, we use a learnersourcing approach.

Our design goals are:

• To create a method for generating subgoal labels that does not require experts,

• To enable learners to generate expert-quality subgoals collaboratively,

• To design human computation tasks that improve learning and are engaging.

Due to the variety in video domain and presentation style on the web, an automatic

approach to generating subgoals does not seem feasible. For example, some videos include

text, some are silent and only show a person completing certain actions, and others rely

on video and sound for demonstration. Automatically adapting to the various presentation

and instructional styles is difficult, and we are looking for a solution that can generalize

to any how-to video on the web. Additionally, subgoals are often at a higher conceptual

level than what the video explicitly mentions, so automatically generating subgoals would

require interpreting and understanding the material.

We built a website, Crowdy, to implement our workflow for learnersourcing subgoal

labels. It is an alternative site to watch videos that were originally hosted on YouTube. The

front page features all videos for the current deployment. When a user selects a video,

Crowdy shows a separate page with an embedded video player and interactive outline

(Figure 6-2). Our learnersourcing workflow asks specific questions as learners watch the

videos, and in turn generates high-quality subgoals for them. Crowdy was created using

standard web technologies (HTML, CSS, jQuery), with a Django backend and the YouTube

API (https://developers.google.com/youtube/) for the video player.

6.3 Workflow Design

In order to enable learners to generate subgoal labels from how-to videos, we designed a

three-stage workflow that engages learners to create and refine each others’ subgoal labels.

Initially, learners are presented with a video player and an interactive outline panel seeded

https://developers.google.com/youtube/
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Figure 6-2: For each video on Crowdy, we show the video player as well as a side panel
with the individual steps. After learners answer a question, the subgoal they added or
picked appears in the outline. Learners can click on steps or subgoals to jump to various
parts in the video. The question block (Figure 6-3, 6-4, 6-5) temporarily replaces the
video player when it appears. The “Print” button enables exporting the outline in a text
format for learners to review later even without the video.

with the low level steps that the video goes through (Figure 6-2). By aggregating the micro-

contributions from learners, Crowdy adds subgoal labels to this outline. The steps are

presented as a vertical timeline, such that clicking on a step moves the playhead to that time

in the video. This research assumes that the low-level steps have already been generated

for a video, and focuses only on generating subgoal labels. Although we manually added

the steps for this research, individual steps could be obtained by crowdsourcing [89] or

automatically in part, possibly by processing a transcript or notes from the video creators.

As learners watch a video, they are stopped periodically and asked a question about

the preceding video section. Although we experimented with having a Wiki-like interface

where learners were asked to contribute subgoal labels but were not forced to, we found

that this direct question approach resulted in more frequent and higher quality participation.
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Figure 6-3: In Stage 1, learners are asked to generate a new subgoal label after watching a
video segment.

We chose a multi-stage workflow because we wanted to make each task small enough

so that learners could complete it without getting too distracted from the video. To ensure a

high quality of final subgoal labels, we use three mechanisms used in prior crowd-powered

systems: we solicit multiple candidate solutions, we use voting to identify the best candi-

dates, and we allow for iterative refinement.

We automatically route each subgoal to the necessary stage, so a learner might expe-

rience different stage prompts even while watching a single video. By removing the need

for human intervention and judgment to move to the next stage, we aim to standardize and

improve the efficiency of the workflow.

6.3.1 Stage 1: Generate

The goal of the first stage (Figure 6-3) is to have learners generate candidate subgoal labels

from scratch. After a certain interval, learners are asked to summarize what they have

just watched. While the learner is answering the question, the individual steps that were

covered in the most recent video segment are bolded in the outline panel. Learners are

given the option to cancel out of the question and are not forced to submit an answer.

In order to minimize spam answers, we made sure learners could easily cancel out of

the prompt. We also designed the question such that it does not require prior familiarity

with the concept of subgoals, but such that the answer to the question can serve as a sub-

goal label. From our preliminary user tests, we found that learners preferred jargon-free
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Figure 6-4: In Stage 2, learners vote on a subgoal they find most accurate.

questions (i.e., using ‘goal’ instead of ‘subgoal’).

When there have been three candidate subgoal labels generated from the first stage, the

next set of learners are asked the stage 2 question.

6.3.2 Stage 2: Evaluate

The subgoal labels that learners generate in stage 1 are not always of the highest quality.

Learners may interpret the question in different ways or have different levels of familiarity

with the video’s topic, which cause their subgoal labels to be different from each other.

In stage 2 (Figure 6-4), learners are presented with the previously generated subgoals and

asked to choose which they feel best captures the preceding section.

The goal of the second stage is to choose the most relevant answer for the video section,

as well as weed out potential spam answers. The input to the question in this stage are the

subgoal labels previously generated by learners. The system presents to learners in this

stage a multiple choice question with previous learners’ labels as options. The number

of subgoal labels presented is limited to maximum 4 to control for the complexity of the

question. The system randomly chooses a subset of all generated subgoals each time.

The learners who are presented with the stage 2 question have the option to choose one

of the subgoals, add their own, or abstain. We do not give learners any indication as to
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Figure 6-5: In Stage 3, learners proofread the most popular subgoal for language and
scope.

which subgoal is most popular during this stage. The subgoal that the learner chooses gets

an upvote, and the ones that were not chosen receive a downvote. We use the upvote and

downvote measures to determine when to move on to the third stage. This helps interpret

user actions by weeding out answers that are consistently not chosen and considering newly

generated subgoals. When the number of upvotes or the difference in upvotes between the

top two subgoals reaches a certain threshold, we accept that subgoal as the winner of stage

2 and route the question to stage 3 for future learners.

6.3.3 Stage 3: Proofread

Learners in stage 2 evaluate the previously generated subgoal labels, but the most popular

subgoal label from stage 2 is not necessarily a high-quality label by our standards. We
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define high-quality subgoal labels as having the correct scope (the subgoal label accurately

reflects the underlying steps) and being concrete and descriptive. For example, for a section

in a CSS video about changing the color of a div, a label like “CSS video” would be too

broad, whereas a label such as “Use CSS to change div color” would be more appropriate.

The goal of this stage (Figure 6-5) is for learners to evaluate the most popular subgoal

label from stage 2 for quality and eventually agree on a final label for that subgoal. The

input to this stage is the most popular subgoal from stage 2, determined by the relative

numbers of upvotes and downvotes. Learners are presented with this subgoal label and the

steps that it covers, and have the option to refine the label or keep it as is. Ideally, when N

learners accept the label without making a change we can assume that the label is final and

future learners would be shown this subgoal without being asked a question. The default

value for N is 3.

We expect alterations at this stage to be minimal because the necessary changes are

often subtle and require a certain understanding of the material. By specifically asking

learners to iterate on the subgoal label, we envisioned that some would accept the challenge

and improve the quality of the subgoal. If a revision is entered, the system waits until N

more people accept the revised subgoal before declaring it final.

6.3.4 Pedagogical Benefits in Learner Prompts

Because we are asking learners to summarize the information presented in the video, we

believe our tasks may offer a pedagogical benefit to learners. At the same time, a major

concern in designing Crowdy was to design the workflow such that participation in the

process of subgoal label creation would not detract from the learning experience. Our core

design decision to use short prompts interspersed throughout the video as the way to collect

input from learners was informed by prior research in education and learning technologies,

which we review here.

The subgoal learning model suggests that the process of grouping a set of solution

steps involves self-explanation [24]. Previous research on self-explanation [14, 65, 158]

suggests that when learners are asked to explain examples to themselves, they learn the
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material better and have greater awareness of their own understanding. Self-explanation

encourages learners to engage in deep cognitive processing, which results in more robust

learning. Our learner prompts also aim to encourage active learning [142], as opposed to

passively watching a video, which is shown to engage learners in the learning process and

improve retention of the material.

Research on designing learner prompts shows that learners self-correct misconceptions

by answering the prompts [165]. Existing online learning platforms such as Coursera add

frequent micro-quizzes inside videos to help people learn better from video lectures, and

research on retrieval practice might provide support for in-video quizzes [80, 81]. In multi-

media learning, different learner prompts are shown to provide different pedagogical ben-

efits [120]. The learning gain was higher when learners picked the best explanation than

when they were asked to type in a possible explanation [77], possibly because the higher

cognitive load in generating an explanation might break the flow in multimedia learning.

These findings suggest that answering learner prompts while watching a video may

actually offer a pedagogical benefit to learners.

6.4 Pilot Study

To iterate on the workflow design and get a general sense of the quality of learner-generated

subgoals, we conducted a pilot study in a user interface design class (6.813/6.831) at MIT in

Spring 2014. The class covers the theory behind designing usable interfaces, and students

are responsible for creating and testing a web interface. Therefore, we felt it was a suitable

deployment for a series of introductory web programming how-to videos. While students

are expected to complete programming assignments and a project involving web interfaces,

these topics are not explicitly covered during class time.

There were approximately 280 students in the class, and most were computer science

majors. By the end of the class we had brought together 21 videos on HTML, CSS,

jQuery/JavaScript, and Meteor (https://www.meteor.com/), a JavaScript platform

for building web apps) into one place. These videos had an average duration of 6:18 min-

utes (stdev=2:49). The videos were all existing videos on YouTube. For each video we gen-

https://www.meteor.com/
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erated the individual steps and learners went through the three-stage workflow to generate

subgoals. There was an average of 76 students participating in each video (stdev=39), 20

subgoals generated per video (stdev=16), and 193 actions (stdev=395), which are logged

when learners answer a question or manipulate subgoals in any way. We deployed the

videos periodically based on the topics for the upcoming problem sets/projects. The video

links were embedded into assignment handouts as a resource. Although students had to

be responsible for the material in the videos in order to succeed in the class, watching the

videos was optional. We used a group of college students to iterate on our design, but in

the future we will consider how using different groups of learners may affect the success

of our workflow, especially if there is no constraint on who can participate.

We did not conduct a rigorous evaluation of the results from this deployment, and in-

stead used the periodic deployments as an opportunity to iterate on our design. We found

that participation was consistent throughout the semester, although participation varied

greatly per video, likely based on video quality and difficulty of the material. In the begin-

ning of the deployment we received a lot of spam answers, which we attribute to unclear

instructions on the website that did not emphasize the option to cancel out of a question.

Additionally, it was not obvious that a user’s answers would be seen by others. The in-

structions in our final workflow state that the answers will be seen by other learners, and

we added a ‘Cancel’ button to reduce spam.

6.4.1 Design Dimensions Refined through Pilot Study

Through our pilot deployment, we refined important design dimensions for the workflow

such as the correct interval to ask questions, whether it is important to show steps, and

whether it is important that learners are asked a question at every interval. During the

deployment, we analyzed the submitted subgoals and talked with users to determine the

pain points of our system. For example, we added an interactive tutorial to Crowdy because

first-time users commented that they were caught off-guard and confused by the questions.

We then iterated on our design and continued our analysis to arrive at our final system.
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Question Interval

For the pilot iteration we asked questions at predetermined, fixed intervals because we

wanted to focus on the overall design of the questions. We started using a 30-second

interval based on our analysis of short (<5 minutes) videos. We arrived at this interval by

manually annotating the subgoals for the short videos we used and averaging the time at

which the subgoals occurred. However, the web programming videos we used in our pilot

deployment were often longer than five minutes. We ended up with a one minute interval

for our live deployment, based on users’ feedback that frequent stops can be annoying to

them. In the future, we would like to make the question intervals adapt to the domain,

context, or video length.

Steps vs. No Steps

We also tested whether the workflow would be successful if the individual steps were not

shown, in case step generation becomes a future bottleneck. We found no significant dif-

ference between subgoals generated when steps were present and not present. However,

users liked the extra information provided and the ability to navigate to different points in

the video by clicking on the steps. The presence of steps allowed users who may have lost

attention during the video to generate a high-quality subgoal by examining the steps that

were covered instead of submitting spam. Therefore we decided to show the steps for the

live deployment.

Random vs. Not Random

We also tested whether learners would generate high quality subgoals if they were not asked

a question at every interval boundary. Half of the users were asked a question randomly at

each interval, and we found that the random interval led to subgoals that varied in scope.

One learner who had the random condition and was only asked two questions, both at the

very end of the video. Both of the subgoals she generated were summaries of the entire

video, instead of being related to the preceding short section. Asking questions at regular

intervals tended to lead to greater consistency in subgoals.
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6.5 Evaluation Overview

The central premise of learnersourcing is that it helps learners learn the material better

while their collective contributions generate meaningful artifacts for future learners. Our

evaluation focuses on verifying this premise in two separate research questions: 1) Does

participating in learnersourcing yield better learning outcomes? 2) Are the learnersourced

subgoals in good quality?

6.6 Study 1: Pedagogical Benefits of Learnersourcing

The goal of this part of evaluation was to quantitatively determine the learning benefit

of prompts specifically designed to generate subgoals. We created three interface condi-

tions that simulated realistic video learning scenarios. While participants watched a how-to

video, the video interface either 1) simply played the video without displaying any ad-

ditional information or prompting learners (baseline condition, Figure 6-6), 2) displayed

expert-generated subgoals but didn’t prompt learners (expert condition, Figure 6-7), or 3)

prompted them to generate a subgoal every minute and displayed their responses in the

sidebar (Crowdy condition, Figure 6-8)

The baseline condition represents a majority of video interfaces today, which plays the

video content without any additional support. The expert condition is meant to create a

highly customized environment where subgoals are labeled by experts and displayed to

learners. While it may be desirable to have more content labeled by experts, limited expert

availability and time prevent a vast majority of educational videos from getting labeled.

For the study, two researchers with expertise in statistics discussed together to generate

subgoals for the material. Crowdy is an alternative way to get a video labeled, with learners’

collective efforts without relying on experts. More importantly, the process of making these

efforts may aid learning. We hypothesize that Crowdy will be more effective in learning

than the baseline condition, and as effective as the expert condition.

The video used in the study was an intro-level statistics video explaining how to com-

pute a population standard deviation 1. The video was from Khan Academy.
1https://www.khanacademy.org/math/probability/descriptive-statistics/

https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
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Figure 6-6: The baseline condition without displaying subgoals or prompting learners.

Figure 6-7: The expert condition with expert-generated subgoals displayed but without
prompting.

Figure 6-8: The Crowdy condition with learner prompts and display of learners’ own
responses.

https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
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Measures of learning used in the study were two-fold. First, a pretest and a posttest were

given to participants immediately before and after watching the video. Total of six ques-

tions were selected from “A Database of Sample Statistics Quiz Questions for DSc310” by

Brian Schott 2, which is based on “Microfiche Copy of the Data Base for the Statistical Test

Item Collection System (STICS)” by NSF 3. The same questions were asked twice, and a

learning gain was measured by the difference in the number of correct answers between

the pretest and the posttest. The questions used are presented in Appendix C. Second, a

retention test was given after three to five days after the initial video watching. It asked

if learners were able to remember the solution information after a time interval. The test

asked learners to “Explain the process of calculating a population standard deviation, step

by step, as detailed as possible.” For assessment, each response was evaluated against the

ground truth answer generated by researchers, which consists of six subgoals that should

be included in the answer, namely:

1. Compute the arithmetic mean.

2. For each data point, find the distance from the mean.

3. Square the distance values.

4. Add all the squared distances.

5. Divide this number by the number of data points.

6. Square root the answer.

Each response was assessed by the number of attempted subgoals and the number of

correct subgoals, extending the subgoal learning evaluation method used in [112, 113].

A researcher decomposed each response into a set of subgoals, or units of information

described in a solution. The total number of subgoals in a response is attempted subgoals,

and ones that semantically match with any of the six in the ground truth are counted toward

correct subgoals. We use these two measures as proxies for learning in the retention test.

variance_std_deviation/v/population-standard-deviation
2http://www2.gsu.edu/˜dscbms/ibs/ibsd.html
3http://www2.gsu.edu/˜dscbms/ibs/tests/readme.txt

https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/population-standard-deviation
http://www2.gsu.edu/~dscbms/ibs/ibsd.html
http://www2.gsu.edu/~dscbms/ibs/tests/readme.txt


146 CHAPTER 6. CROWDY: LEARNERSOURCING SUBGOAL LABELS FOR HOW-TO VIDEOS

Additionally, we aimed to see if Crowdy’s prompting incurs high task load, which may

detract learners from the main learning activity. After watching the video, participants

completed the NASA TLX test [63] for measuring task load, in a 7-point scale.

In summary, our hypotheses are as follows:

H1 Retention scores are higher in Crowdy and expert conditions than the baseline.

H2 Immediate test scores are higher in Crowdy and expert conditions than the baseline.

6.6.1 Participants

We initially recruited 300 participants through Amazon’s Mechanical Turk. While 300

finished the first round study, due to attrition in the retention test phase, 229 of them com-

pleted the entire study. All data reported hereinafter are based on the 229 participants.

Participants’ mean age was 32.4 (stdev = 9.3; min = 18; max = 67), with 140 male. They

received $2 for their participation in the first round, and were invited to participate in the

retention test 3 days later via email. Upon completion of the retention test they received an-

other $1 reward. Most participants reported a low level of knowledge in statistics (5-point

Likert scale, 1: novice, 5: expert, M = 2.1, stdev = 1.0) and low familiarity with the topics

covered in the video (5-point Likert scale, 1: not at all familiar, 5: very much familiar, M

= 2.0, stdev = 1.1). For all self-rated prior knowledge questions, there was no significant

difference between the interface conditions.

While crowd workers on Mechanical Turk are not voluntary learners on Crowdy, we

believe Turkers are a viable population to evaluate learnersourcing with. In a previous

study where participants were given critical-thinking problems, Turkers’ performance was

statistically equivalent to that of workers at a university in the United States [133]. A reason

we chose not to run a lab study is because we thought Turkers might better represent self-

directed, online learners than lab study participants who are likely to be highly educated

and motivated. Another benefit is ease of recruiting a large number of participants, which

may better simulate visitors on a public website like Crowdy. To look at how real learners

on Crowdy use the site for learning and subgoal labeling, Study 2 reports results from a

live deployment.
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6.6.2 Procedure

This study used a between-subject design, where each participant was randomly assigned

to one of the three interface conditions. For each condition, 100 Turkers were recruited in

the initial session.

Initial Session: Participants first completed a pre-questionnaire that asked demographic

information and their prior knowledge in statistics. Then the pretest questions were asked,

along with a self-rated confidence level for each answer, in a 5-point Likert scale. Upon

submitting the pre-questionnaire, participants watched the video using the interface they

were assigned. The video player control was disabled to prevent Turkers from skipping the

playback. Once the video reached the end, the post-questionnaire was presented, which

included posttest questions that were identical to the pretest questions. Additionally, par-

ticipants completed the NASA TLX questions, which measured task load. Six 7-point

Likert scale questions were asked, addressing mental demand, physical demand, temporal

demand, performance, effort, and frustration. Task completion time was also measured.

When Turkers submitted the post-questionnaire, a confirmation code was displayed, which

they had to enter in a form field to get credit.

Retention Test: All Turkers who completed the initial session were invited to par-

ticipate in the retention study. The invitation email was sent to these Turkers three days

after the initial session, and they could complete the retention test for three days, which

means that they had between three to five days of time interval between video watching

and retention test.

6.6.3 Results

H1: Retention Test

Attempted Subgoals: Participants in the Crowdy (M = 4.77, stdev = 1.67) and expert (M

= 4.75, stdev = 1.76) groups submitted more subgoals than the baseline group (M = 4.09,

stdev = 1.95), as shown in Figure 6-9. Bartlett’s test did not show a violation of homo-

geneity of variances (χ2(2)= 1.95, p = 0.38). One-way ANOVA reveals that interfaces had

a significant effect on the number of attempted subgoals (F(2, 226)=3.6, p< 0.05, partial
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Figure 6-9: The number of attempted subgoals in the retention test. Crowdy = Expert >
Baseline. Error bar: standard error.

η2=0.03). Because the study design included the baseline as a reference condition, our

analysis focuses on planned contrasts against the baseline using a Dunnett’s test. Dunnett’s

post-hoc test shows significant differences in both Crowdy-baseline (p < 0.05, Cohen’s d

= 0.38) and expert-baseline (p < 0.05, Cohen’s d = 0.35) pairwise comparisons.

Correct Subgoals: Participants in the Crowdy (M = 4.39, stdev = 1.85) and expert (M

= 4.52, stdev = 1.83) groups submitted more correct subgoals than the baseline group (M

= 3.63, stdev = 2.08), as shown in Figure 6-10. Bartlett’s test did not show a violation of

homogeneity of variances (χ2(2)= 1.55, p = 0.46). One-way ANOVA reveals that interfaces

had a significant effect on the number of correct subgoals (F(2, 226)=4.8, p< 0.01, partial

η2=0.04). Dunnett’s post-hoc test shows significant differences in both Crowdy-baseline

(p < 0.05, Cohen’s d = 0.38) and expert-baseline (p < 0.01, Cohen’s d = 0.45) pairwise

comparisons. There was no significant difference between the Crowdy and expert groups.

Dropout Rate: Results may be skewed if participants in a particular condition com-

pleted the retention test significantly more than those in other conditions. For this reason,

we analyzed the dropout rate for each condition. Across all conditions, 76% of the people

returned for the retention test (229 out of 300), with 79 in baseline, 75 in expert, and 75
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Figure 6-10: The number of correct subgoals in the retention test. Crowdy = Expert >
Baseline. Error bar: standard error.

in Crowdy groups. A Chi-square test, in which whether a participant returned for the re-

tention test was coded as a binary variable, revealed that there is no statistically significant

difference in the dropout rate between conditions (χ2(2, N = 300) = 0.59, p = 0.74, φ =

0.04).

These results support the hypothesis that with Crowdy, participants were able to re-

construct the solution procedure better than the baseline group in the retention test. This

implies that Crowdy provides pedagogical benefits to learners with its prompting mecha-

nism over the baseline video interface. Also, the Crowdy group performed as well as the

expert group, which suggests that even in the absence of expert-generated subgoals, learner

prompts provide equally effective learning support.

H2: Pretest and Posttest

A learning gain was measured as the pretest score subtracted from the posttest score, which

was assessed shortly before and after watching the video in the initial session. Participants

in all the groups showed positive learning gains, as shown in Figure 6-11. Paired t tests

revealed statistical significance between the pretest and posttest scores (Baseline: t(78)
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Figure 6-11: The pretest and posttest scores. No significant difference between the inter-
faces. Error bar: standard error.

= 3.8, p < 0.005, Cohen’s d = 0.43; Expert: t(74) = 5.9, p < 0.005, Cohen’s d = 0.69;

Crowdy: t(74) = 3.1, p < 0.005, Cohen’s d = 0.37).

While participants performed better after watching the video in all the groups, there was

no significant difference between the groups in terms of learning gains (one-way ANOVA

p = 0.31).

The Crowdy group did not outperform the baseline group, although the Crowdy group

and the expert group performed equally well. These results do not support H2.

Task Load

The task load score was computed by taking a mean value of responses to the six NASA

TLX questions (7-point Likert scale, 1: low workload, 7: high workload). One-way

ANOVA revealed that there was no statistically significant difference between the groups (p

= 0.20; Baseline: 3.80, stdev=1.06; Expert: 3.77, stdev=0.95; Crowdy: 4.04, stdev=0.94).

Results suggest that answering learnersourcing prompts did not add a significant work-

load to participants.
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Task Completion Time

Task completion includes time taken to complete the pre-questionnaire, video playback,

any learner prompts, and the post-questionnaire in the initial session. Participants took

around half an hour to complete a session across groups (M=1762 seconds, stdev = 685).

One-way ANOVA revealed that there was no statistically significant difference between the

groups (p = 0.06), although the baseline group (M = 1616 seconds, stdev = 615) generally

took less time than the expert (M = 1818, stdev = 732) and the Crowdy (M = 1861, stdev =

690) groups.

Considering that the video used in the study was 8 minutes long, participants in the

expert and Crowdy groups took roughly half the video length of additional time (4 minutes)

to complete a session. Because the Crowdy group was prompted 8 times during video

watching, each subgoal generation activity took approximately 30 seconds with a rough

estimate.

6.7 Study 2: Quality of Learnersourced Subgoals

The goal of this part of evaluation was to test our claim that learners can collaboratively

generate subgoals of similar caliber to those generated by domain experts. We chose to

deploy the Crowdy system live to test this claim with real users on the web. After improving

the workflow based on the pilot study, we publicly launched a website that embeds videos

and implements our three-stage workflow, as seen in Figure 6-12.

6.7.1 Study Structure

Our study targeted anyone interested in learning introductory web programming. Crowdy

was presented as a way to learn web programming through collaborative video watching. In

order for the site to stand alone, we included 15 videos (average duration=6:15, stdev=2:08)

covering the basics of HTML, CSS, and JavaScript/jQuery. We refined the original selec-

tion of videos from the pilot study to remove less popular ones and added some to increase

coverage. A summary of the videos included is presented in Table 6.1. We manually an-
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Figure 6-12: The Crowdy website features how-to videos with the learnersourcing work-
flow embedded.

notated each of the videos to generate a list of individual steps to be shown alongside the

video. All of the videos started with zero subgoals, and all contributions were from people

visiting the site voluntarily.

6.7.2 Deployment Strategy and Participation

We used various strategies to promote the website. We emailed to lists at universities,

posted on social media (Twitter, Facebook, Reddit, Hacker News), reached out to local

hacker schools, and bought keywords on Google Ads. Furthermore, we added our link to

YouTube comments on the original videos we used to attract learners watching the videos

on YouTube to visit Crowdy. In our analysis, we included data from May 5 to May 29,

2014 (25 days).
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Video Title Domain YouTube Views Length 
Learn HTML- Basic Structure and How to 
Link Pages 

HTML 8,745 4:48 

Div and Span HTML 12,934 6:09 
HTML Website Tables & Layouts Tutorial HTML 210,777 4:19 
How to create forms in HTML5 HTML 9,983 9:23 
Introduction to styling with CSS CSS 3,150 6:55 
Adding Style Rules Using Google Chrome 
Developer Tools 

CSS 205 4:47 

CSS Absolute and Relative Positioning Tutorial CSS 34,113 6:56 
Making Divs Side by Side using CSS CSS 17,644 4:24 
Z-Index CSS Tutorial CSS 8,158 7:33 
Introduction to Selectors jQuery/JavaScript 40,825 2:06 
ID selector jQuery/JavaScript 36,795 5:53 
addClass jQuery/JavaScript 13,871 4:46 
Click Event Handler jQuery/JavaScript 11,234 6:56 
Working on the Drag and Drop Program jQuery/JavaScript 41,615 9:28 
Finishing the Drag and Drop Program jQuery/JavaScript 38,145 9:16 
 

Table 6.1: How-to videos used in our live deployment. We evaluated the quality of learn-
ersourced subgoal labels for the four bolded videos because they were the most popular
videos on Crowdy.

During the 25-day deployment, 1,268 users visited 2,838 pages, with an average ses-

sion duration of 1.3 minutes. The top 4 traffic sources were direct access (41.31%, includ-

ing mailing list clicks and typing in the URL), Twitter (23.81%), Google organic search

(12.39%, which are clicks on search results, not advertisements), and Facebook (8.84%).

All traffic data was collected with Google Analytics.

6.7.3 Evaluation Method

We chose the four most popular videos on Crowdy (boldface in Table 6.1) HTML Intro,

Intro to CSS, Making divs side by side, and Intro to selectors) to evaluate the quality of

learnersourced subgoal labels. These videos resulted in 17 final subgoal labels.

To judge the quality of the learner-generated subgoals, we compared them to expert-

quality subgoals. We recruited two faculty and staff members in computer science at a

university, who have extensive experience in web programming, to be our domain experts.

After explaining what subgoals are and providing examples, the domain experts watched

the four videos that we are evaluating and generated subgoals using our system. Because we

only allowed learners to generate subgoals at predetermined intervals, we asked the domain
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Expert Subgoal Evaluation Learner Subgoal 
Learn HTML- Basic Structure and How to Link Pages 

Create top-level structure of an HTML file Expert better The video stopped right as it was starting to talk about the 
head section 

View HTML page in a Web browser Expert better Save and open a HTML document in the browser 
Add a hyperlink Learner better Create link to another page 
Create target page of the hyperlink Match Create another page to link to and from 
View and navigate between both pages Expert better Create HTML pages and links 
 Introduction to styling with CSS  
Understand what CSS is No majority Introducing CSS, comparison to HTML 
Two kinds of CSS styling Match Inline styling, and difference between this and stylesheets 
Set text color of a paragraph Match Using the style and color attributes of inline styling 
Set background color of a paragraph Expert better Problems with inline styling, solutions 
Create an external stylesheet Match Create a stylesheet to set paragraph colors 
Linking stylesheet to HTML file Match Linking CSS documents to HTML 
 Making Divs Side by Side using CSS  
Create divs in HTML file Match What HTML code is used to create side-by-side <div> 
Create CSS for wrapper and left div Match Define div appearance with style blocks 
Create CSS for right div Expert better Style the left and right div, color, height, width 
Position divs side by side Match Put the two divs side by side and adjust spacing between 

them 
Introduction to Selectors 

Create HTML and JavaScript files Learner better Selector introduction 
See example of a jQuery ID selector No majority Using selectors and jQuery to create event handlers for 

page objects 

Table 6.2: Expert labels compared to Learner subgoals for the four videos selected for
evaluation. For each pair, we identify whether a majority of evaluators felt the subgoals
matched or that one was better than the other. In some cases there was no clear majority
between evaluators, which we have also noted.

experts to generate labels using the same intervals for direct comparison. In the future,

we plan to evaluate subgoals at the entire video level without the set interval. Table 6.2

compares all the subgoal labels from both the experts and learners. For learner-generated

subgoals, we took the subgoals that were in stage 3 or most popular in stage 2 for the four

videos we selected. At the end of our deployment, five of the subgoals were in stage 3, but

most had a clear majority.

To measure how the learner-generated subgoals compare to the expert-generated sub-

goals, we created a worksheet (Figure 6-13) to have another group of domain experts rate

whether the subgoals matched or which one was better, and why. We randomized which

side of the worksheet each of the subgoals was on, so evaluators did not know which were

generated by learners and which were by experts. They were instructed to rate based on how

well the subgoals covered the given steps, and whether they were concrete and descriptive.

We recruited four domain experts who were graduate students in computer science with

substantial web programming experience to rate 17 subgoals in the four videos.
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Subgoals + Steps  Your Evaluation Subgoals + Steps 

Create divs in HTML 
file 

L                          R What HTML code is 
used to create side-
by-side <div> 

1. Create a new html 
file 

Please explain: 
 
 
 
 
 

1. Create a new html 
file 

2. In the body section of 
the html file, create a 
div with a id="wrap" 

2. In the body section of 
the html file, create a 
div with a id="wrap" 

3. Create another div 
inside the wrapper with 
class="left" 

3. Create another div 
inside the wrapper with 
class="left" 

4. Underneath the left 
div, create another div 
with class="right" 

4. Underneath the left 
div, create another div 
with class="right" 

Figure 6-13: An excerpt from the worksheet given to domain experts to evaluate learner-
generated subgoals. The subgoals were randomly placed on the left and right so experts
had no notion of which was which. Evaluators were asked to choose whether the subgoals
matched, or which was better, and provide an explanation.

We used a scoring scheme to better compare the subgoal labels. Each evaluator’s rating

is assigned either -1 (expert label is better), 0 (expert and learner label match), or 1 (learner

label is better), which match the three options the evaluators were given for each subgoal.

The score of -4 means all raters thought the expert label was better, while 4 means all raters

thought the learner label was better.

6.7.4 Results

During the 25 day deployment, learners generated 109 subgoals in stage 1, added 14 new

subgoals in stage 2, and edited 3 subgoals in stage 3. There were 109 upvotes in stage 2,

and 13 upvotes in stage 3.

Table 6.2 shows all 17 labels generated by experts and learners. For 14 out of 17 labels,

the learner label was voted as matching or better than the expert label from at least one of

the four raters. When we used majority voting to determine a winner in the comparative
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Figure 6-14: The distribution of subgoal label scores. The scoring scheme assigned -1 if
an expert label is better, 1 if a learner label is better, and 0 if they match. While a majority
of the subgoals were within the -2 and 2 range, three subgoals had unanimous votes for the
expert label, and one subgoal had unanimous votes for the learner label.

evaluation, eight labels were considered matching between the learner label and the expert

label, five were voted in favor of the expert label, two were voted in favor of the learner

label, one was a tie between matching and in favor of the expert label, and one was a

tie between favoring the expert and learner labels. Figure 6-14 shows the distribution of

scores using the scoring scheme. Due to the highly subjective nature of the matching task,

inter-rater reliability (Fleiss’ κ = 0.19) showed a slight level of agreement [102].

Participation

Based on our logging, we found that 119 users (unique sessions) participated in a single

video, 17 participated in two, and 14 participated in three or more. Only 26% of users

participated in multiple videos.

We now discuss interesting cases in detail: labels for which the expert label was unan-

imously voted as better, labels for which the learner label got worse in stage 3, and labels

that were voted to be matching.
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Example of subgoals where expert’s is better

Scoping of a subgoal label matters. Most evaluators judged the subgoals on whether they

were accurate representations of the given steps. A common complaint was over subgoals

that were too specific, or ones that did not seem to capture the steps at all. Evaluators

tended to prefer subgoals that were informative instead of those that captured only generic

statements. For example, evaluators preferred the expert subgoal “View and navigate be-

tween both pages” over the learner subgoal “Create HTML pages and links” for a subgoal

in the introduction to HTML video because the learner subgoal was too broad.

Expert subgoal: View HTML page in a web browser

Learner subgoal: Save and open a HTML document in the browser

Steps:

1. Save file with .html extension

2. Open file in web browser to view

Evaluators felt the expert subgoal was more holistic, whereas the learner subgoal simply

enumerated the steps that were covered. This subgoal was added in stage 1, and was chosen

over other answers such as “Save and open HTML”, “HTML format”, “describe page tags”,

and “Implementation of an HTML page”. Out of these choices, “Save and open a HTML

document in the browser” is the most accurate and the most specific. However, as a subgoal

it is not ideal because it exactly replicates the steps. This subgoal correctly summarizes the

steps, as asked in stages 1 and 2, but could have been altered to be less specific in stage 3.

This suggests a lack of instruction on our part in stage 3 where learners are asked to

make sure the subgoals cover the provided steps, but are not instructed to make subgoals

neither too broad nor too specific. This sort of instruction could be added to stage 3, or

we could implement multiple versions of stage 3, where we ask learners about different

aspects of the subgoal.

Example where final subgoal got worse in stage 3

Expert subgoal: Create top-level structure of an HTML file
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Learner subgoal (most popular subgoal after stage 2): Basic structure of HTML

template

Learner subgoal (subgoal altered in stage 3): The video stopped right as it was start-

ing to talk about the head section

In this example, a learner who saw a stage 3 question for this subgoal changed the sub-

goal to something of much lower quality. The final subgoal in this case does not summarize

the video section. Although learners only rarely made a drastic replacement to a subgoal

in stage 3, we need to consider mediation methods to prevent this from happening in the

future. One possibility is to accumulate votes throughout the stages and only allow minor

changes to subgoals that already have a lot of votes.

Example of subgoals that match

Expert subgoal: Set text color of a paragraph

Learner subgoal: Using the style and color attributes of inline styling

Steps:

1. Type ’color’ inside the style attribute to set the color of the paragraph

2. Assign the hexadecimal value #FFFF00 to make the paragraph yellow

3. View the file in the browser to see the yellow paragraph

4. Type a semicolon after the property value to separate the properties

These subgoals are slightly different, yet the majority of evaluators felt they accurately

covered the steps. This suggests that there can be variability in subgoals. Learners and ex-

perts (or people in general) can have different interpretations on what the ‘correct’ subgoal

is. Further study will need to see if learner-generated subgoals, even if imperfect, still lead

to improved learning gains as observed in literature.

6.7.5 Interviews with Users

To better understand learners’ experiences, we conducted semi-structured interviews with

three learners who have used Crowdy. Learners identified themselves to us via email after

using our system to ask a question or express their interest in the site. They had various



6.7. STUDY 2: QUALITY OF LEARNERSOURCED SUBGOALS 159

programming experiences, but all were web programming novices. We conducted 30-

minute video interviews where we asked them about their experience on the site and tried

to learn about their thought process while they used Crowdy.

Learners in general felt that Crowdy’s prompts while watching a video helped them pay

attention, and one specifically noted that answering the questions helped him remember the

concepts. This suggests that the learnersourcing prompts may have had a positive effect on

learning. Learners also liked being able to reference the video’s steps as they watched.

According to one learner, “having the steps there and knowing that I was going to have to

fill out goals made me pay attention to the video slightly differently.” In contrast, he felt that

if he had watched the video with no steps or questions, he would have mindlessly followed

along without learning anything. Another learner commented, “When I first watched the

first video I didn’t really know what to expect, but in the second and third videos I was

more... attentive to watching, to trying to understand what exactly am I watching instead

of blindly watching.” Learners also recognized that the quality of the underlying video

affected how well they learned the material, even if the prompts helped them engage with

the material.

Learners had different critical approaches to the multiple choice questions in stage 2.

One learner never contributed additional subgoals in stage 2 because he felt “the ones that

were there were pretty descriptive already.” Another added his own answers instead of

choosing an existing subgoal about 50 percent of the time. He said, “I would choose one if

it was close to what I would have written... I think I was pretty critical, actually.” Learners

liked seeing labels added by other learners. One learner said the choices “...made me feel

as though I was on the same wavelength still.”

The set interval for the learnersourcing prompts was hit or miss. For some videos

it seemed okay, but for others it felt too short and others too long. Some learners felt the

questions were asked at suboptimal times, especially for the shorter videos. One mentioned

“on a really short video, it was a little harder to see the goals,” and another said, “The

introduction videos didn’t cover very much content, so they could use a longer span, while

something that covers more information would need to stop more frequently.”
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6.7.6 Interview with Video Creator

We also interviewed a creator of one of the videos to get the author’s perspective on the

value of having subgoal labels added to the video. We contacted some of the authors

through YouTube messaging, and one author volunteered to share his thoughts. We showed

him the learner-generated subgoals from his video and asked questions over email. For his

video, he felt that most of the subgoals were correct except for the last one, which was too

broad in his opinion.

He was happy that the outline and the questions might make learners stay and watch the

entire video, or be able to easily find the sections that they want to watch. He commented,

“Having pop up questions means the viewer has to be paying attention.” This means that

our system can be beneficial to both video learners and video creators because it has the

opportunity to enhance what the author has created with the help of learners watching the

video.

6.8 Discussion

We now discuss the strengths and weaknesses of the Crowdy system and its learning ap-

proach, with respect to learning benefits, learner motivation, and generalizability.

6.8.1 Crowdy’s Video Learning Model

Our two-part evaluation demonstrates that participants learn the material better when they

engage in the subgoal generation activity. The contributed subgoals by learners prove to be

high quality, which in turn can help future learners learn better.

Crowdy presents a video learning model that combines in-video quizzes and note-

taking. In-video quizzes are often presented to assess learners’ understanding of the mate-

rial. Crowdy uses the in-video quiz format to not just give learners a chance to self-explain,

but also to use the answers as meaningful artifacts for future learners. On the other hand,

note-taking is often an open-ended activity learners engage in whenever and however they

want to. Crowdy adds structure to note-taking by presenting learner prompts in specific for-
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mats and in pre-determined time intervals. The prompted, structured note-taking enables

the system to process, assess, and combine learners’ notes, to create meaningful artifacts

for future learners.

6.8.2 Pedagogical Benefits of Learnersourcing

Why does Crowdy lead to higher learning gains in retention? The Crowdy group per-

formed better in the retention test than the baseline group. Our results are consistent with

the subgoal learning literature, which reports that when subgoal labels were shown to par-

ticipants, they performed better in problem solving in a retention test than those shown no

labels [23]. With the self-explanation prompts, participants may be more likely to learn the

subgoals better, because the prompts encourage them to reflect on the material and sum-

marize into higher-level descriptions. This process may promote subgoal learning, which

reduces extraneous cognitive load and helps with mental model creation in the learning

process [23]. Also, Crowdy’s prompts are an active and constructive mode learning, which

is shown to yield better learning outcomes than the passive mode of learning [27].

The Crowdy and expert groups performed equally well in the retention test. Most

studies in the literature have been using manually labeled subgoals by researchers and

experts [23, 112, 113]. Our results contribute a new finding that learners can provide ex-

pert quality labels while also benefiting from actively learning the subgoals themselves.

This finding suggests that experts’ video labeling efforts may be replaced with learners’

collective efforts. This has implications for a large number of educational videos online,

especially those not produced by companies or schools with high budget. With Crowdy’s

video learning intervention, the long tail of online videos can benefit from an enhanced

learning experience.

Why does Crowdy fail to yield higher learning gains in pretest-posttest? Although

we initially hypothesized that Crowdy will also lead to higher learning gains in immediate

testing, our results show that Crowdy was as effective as the baseline condition. Some pos-

sible explanations are as follows: First, Crowdy’s summarization prompts may not have

been as useful in solving the conceptual questions used in the pretest and posttest (the
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questions are presented in Appendix C). This is in contrast to reconstructing the solution

procedure asked in the retention test, which more directly matches with the subgoal gen-

eration task given while watching the video. The mismatch between the learning activity

and the test may also explain why the expert condition did not result in better learning.

Second, we used a video from Khan Academy, which is highly engaging and easy to un-

derstand. Additional prompts may have less room for improving the learning experience, as

the source material already does a good job. Third, we used a relatively short video (eight

minutes long), which might have been short enough to keep participants’ attention through-

out. Finally, Turkers with monetary reward may have been incentivized to pay attention to

the material.

Small effect sizes? While the reported effect sizes are in the small to medium range [35],

Crowdy’s video learning approach is effective for two additional reasons. First of all,

Crowdy’s intervention was simple and short. It only involved answering simple prompts

while watching a video, with no additional workload and small added time. Also, with

Crowdy, learners not only learn the material better but also generate subgoal labels that

contribute to creating a video outline.

6.8.3 Improving the Workflow for Better Subgoal Labels

Why does Crowdy need all three stages?

Stage 1 is necessary for the system to obtain initial subgoals from scratch. The quality

of these initial subgoals largely determines the overall quality of the final subgoal label

because future steps mostly focus on refining existing steps, not generating completely

new ones. In Figure 6-15, raw subgoals in stage 1 vary in quality. In our deployment, there

were power users who submitted a set of high quality subgoals in stage 1, which usually

ended up being the most popular all the way through. How can we better guide learners

to come up with quality subgoals? The current learner prompt provides an example, but

more contextual, domain-specific examples and counterexamples that highlight the desired

properties in a subgoal label might help.

Stage 2 is necessary to remove spam and to pick the best label from candidates, but
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Subgoals added 
in stage 1

Final evaluated subgoal

basic structure of 
HTML template7 3

Create HTML 
tags1 14

describe the 
page tags0 15

create a website0 9

learn0 7

Make a whole 
HTML page1 9 basic steps to 

creating an 
HTML template

0 2

The video 
stopped right as 
it was starting to 
talk about the 
head section

0 0

Subgoals added 
in stage 2

Subgoals added 
in stage 3

Figure 6-15: The subgoals that were added in each of the stages for the introduction to
HTML video. The green numbers refer to upvotes, and the red numbers refer to downvotes.
In stage 3, we expected small iterations, but found that one learner drastically changed the
tone of the original subgoal.

results suggest that more guidance on which one to pick would improve the voting process.

Our current design assumes that one label is going to be significantly better than others,

but there is the possibility that they will be close. In such cases, the learner prompt can

suggest more specific guidelines by encouraging them to consider scope and language and

presenting contrasting good and bad examples. Another potential problem we noticed is

that learners are reluctant to submit their own labels in this stage and resort to the best one

from the candidates, even when they find the existing ones unsatisfactory. We plan to study

the voting process in more depth, and design ways to lower the cost of label revision in

stage 2.

Stage 3 is necessary to adjust the scope and language for finalization, but it still triggers

learner prompts at a pre-defined subgoal label boundary, preventing learners from looking

for video-wide consistency and scoping improvements. Also, in stage 3 we expect learners

to only make incremental changes, but a learner who totally missed the point could change

a previously ‘good’ subgoal. This is what happened in Figure 6-15. We are considering

mediation methods to prevent later stage input from completely overwriting the earlier
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Subgoals added 
in stage 1

create an event 
handler1 4

Introduction to 
jQuery selectors0 5

Using selectors 
and jquery to 
create event 
handlers for page 
objects

1 1

Subgoals added 
in stage 2

Figure 6-16: The subgoals that were added in each of the stages for one portion of the
introduction to jQuery selectors video. The green numbers refer to upvotes, and the red
numbers refer to downvotes. The subgoal added in stage 2 is a combination of the subgoals
added in stage 1, which suggests that the learner who created this subgoal may have used
the stage 1 subgoals as a baseline.

stage input and are looking to automatic methods for evaluating subgoals before they are

considered final.

In many cases, we found an improvement in subgoals added as learners progressed

through the stages. For example, in the “Introduction to Selectors” video, a stage 2 user

combined the subgoals “create an event handler” and “Introduction to jQuery selectors”

to create the final subgoal “Using selectors and jquery to create event handlers for page

objects” (Figure 6-16). This suggests that even if incomplete, the subgoals in stage 1 are a

good baseline for the final selected subgoal.

In general, we found that our learnersourcing workflow succeeded because it allowed

many learners to contribute at a micro level, and learners were generally successful at iden-

tifying the ‘best’ subgoal in each set. For learnersourcing systems in general, we believe it

is important to consider the amount of information given to learners at each task so they are

equipped to contribute without being distracted from learning. The type of prompt is also

important so learners are contributing as much information as possible and still benefiting

from the original educational material.

In the future, we would like to make the question interval more context-specific. Some

ideas for informed segmentation are to analyze the audio track for speech breaks, run topic
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modeling on the transcript to detect topic transitions, or leverage signals from previous

learners’ in-video interaction [85, 86]. Allowing learners to move subgoals to the correct

spot and making sure questions aren’t asked in the middle of words could be a preliminary

step. Another approach would be to add additional steps to the learnersourcing workflow

to allow learners to contribute the subgoal boundaries.

Only 26% of users participated in multiple videos, so we want to look for ways to

encourage learners to stay on the site, perhaps by recommending videos or visualizing the

learners’ collective progress.

6.8.4 Limitations

More domains: Our evaluation covered two procedural task domains: web programming

and statistics videos. The videos we chose were how-to videos that had hands-on, con-

crete, demonstrated tasks through which instructors walked the learners. Although there

is nothing in the workflow that is specific to the two domains we used, we don’t have any

quantitative data about learner-generated subgoals from other domains to show that the

workflow is domain-independent. We plan to include videos from other how-to domains

such as cooking or home improvement. Expanding the approach to more conceptual and

less structured videos, such as lecture videos, is another avenue for improvement.

Longer term, larger deployment: Our 25-day deployment with over 1,000 users was

helpful for us to get the initial idea of how our workflow works, but we believe a longer and

larger deployment will be helpful. While many people visited the website out of curiosity,

not many learners were seriously willing to learn web programming. As a result, not many

videos received enough learner input to advance to stage 3. We plan to host more videos and

continue the live deployment, which will provide us with more data for a deeper analysis

on how learners in the wild use our workflow.

6.9 Conclusion

This chapter introduces Crowdy, an active learnersourcing application for generating sub-

goal labels from a how-to video. It presents a multi-stage workflow where learners collabo-
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ratively contribute useful information about the video while answering reflective summary

questions. Our study shows that Crowdy provides learning benefits in a retention test,

over a baseline video watching interface. Our deployment study shows that a majority of

learner-generated subgoals were comparable in quality to expert-generated subgoals, and

that learners reported they were paying more attention to the material and felt they under-

stood the material better after going through the workflow.



Chapter 7

Discussion

This chapter compares learnersourcing against paid crowdsourcing, lays out the design

space of passive and active learnersourcing, and presents design lessons for future re-

searchers and practitioners. I will also discuss some of the limitations of learnersourcing

and the approaches introduced in the thesis.

7.1 Learnersourcing vs Crowdsourcing

What makes learnersourcing different from crowdsourcing? Knowing the differences helps

illustrate what learnersourcing is and what aspects designers should consider when design-

ing learnersourcing applications. This section compares learnersourcing against generic

crowdsourcing, specifically paid, microtask crowdsourcing commonly found on platforms

such as Mechanical Turk.

7.1.1 Purpose

From a requester’s point of view, while paid crowdsourcing mainly aims to collect desired

data, learnersourcing attempts to help learners learn better while collecting desired data.

This difference may constrain the range of tasks amenable to learnersourcing, because both

goals should be met in a single learnersourcing task.
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Design Dimension Learnersourcing Crowdsourcing

Purpose learning + data collection data collection

Task property
pedagogically meaningful
and engaging

simple and standalone

Task context task given while learning
task given because the
worker decided to work
for hire

Design challenge incentive design quality control

Goal visibility overall contribution visible
microscopic, focused de-
sign

Cost learners’ time and effort money

Table 7.1: Comparison between learnersourcing and paid crowdsourcing, along major de-
sign dimensions.

7.1.2 Task Property and Context

A fundamental difference in learnersourcing tasks and crowdsourcing tasks is that learner-

sourcing tasks are embedded in an existing learning material or interface, whereas crowd-

sourcing tasks are often presented as standalone.

This means that learnersourcing tasks need to be contextual: they should closely align

with the underlying material (e.g., a learnersourcing prompt should ask about the video the

learner is currently watching). This characteristic in learnersourcing can be both a chal-

lenge and an opportunity. It can be challenging to design a pedagogically meaningful and

engaging task within the scope of the original material. The quality of the original mate-

rial may affect participation and data quality in learnersourcing. Also, learners may not be

willing to participate if the task seems tangential or unrelated to the learning material. On

the other hand, it can be an opportunity as learnersourcing tasks can leverage the original

material to their favor. For example, Crowdy presents subgoal generation prompts as if

they were in-video quizzes.

In crowdsourcing, requesters often create a self-contained environment in which work-

ers complete tasks. By designing simple, standalone tasks, requesters can have more con-

trol in task design. Workers only see the task because they explicitly decided to work for
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hire.

7.1.3 Design Challenge

The main design challenge in learnersourcing is incentive design, which is about motivating

learners to actively participate in the tasks while generating useful human computation

artifacts. In active learnersourcing, tasks are often displayed after interrupting the learner,

or by embedding additional complexity to the learning interface. These properties make it

challenging to design a successful learnersourcing application, because a learnersourcing

prompt should meet multiple criteria at the same time: be engaging, not detract learners

from the main learning experience, collect useful information from the learner, and help

with learning.

Two useful design tips in learnersourcing are: 1) to appeal to learners’ self-motivation

by clearly communicating that engaging in the prompt can help them learn better, and 2) to

appeal to learners’ altruism by clearly communicating that their contribution can help other

learners.

In paid crowdsourcing, the foremost importance is in collecting clean and consistent

data. There are many ways workers might submit low quality work: they might optimize

for earning the most money with minimal amounts of work [11] or exhibit spamming be-

haviors. Quality control mechanisms (e.g., gold standard or majority voting) need to be in

place to ensure that workers provide quality input. While important, incentive design in

paid crowdsourcing can be controlled with the amount of reward to certain extent.

In learnersourcing, on the other hand, quality control may not be as critical of an issue.

Learners are incentivized to watch these videos based on their own desire to learn, not

because they will receive payment. Learners may provide higher quality answers than a

paid crowd because they are motivated by their interest in the instructional material.

Because tasks are presented only after the learner is engaged in the learning material,

there is likely a higher barrier to entry for spammers. But there is still a danger of learners

submitting minimal work to return to the main material as soon as possible. Seamlessly

integrating the learnersourcing task into the learning experience is a way to address this
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issue.

7.1.4 Goal Visibility

In paid crowdsourcing, workers often work on a microtask without necessarily knowing

how their work is going to be used. Similarly, many human computation applications

such as reCAPTCHA 1 and ESP Game [160] do not expose their underlying goal of data

collection. Such design helps workers focus on the task at hand without raising complexity

of work.

In learnersourcing design, however, it is recommended that the underlying goal is

clearly conveyed to learners, so that knowing the goal can further incentivize them to par-

ticipant in the task. Also, another notable difference is that in learnersourcing, learners

themselves are the target population that the human computation outcome benefits. For ex-

ample, the learner who contributed to generating subgoal labels for a video can benefit from

navigating the video with improved subgoal labels when they revisit the video. This design

also makes it possible to progressively benefit learners as more data becomes available: as

more learners contribute, the quality of the learnersourced artifact will be increased. In this

sense, learnersourcing is similar to peer production communities like Wikipedia.

Cost

The cost structure differs significantly between learnersourcing and crowdsourcing. Learn-

ersourcing relies on learners’ time and effort, without paying for their work. In learner-

sourcing design, the cost structure may be harder to quantify than in paid crowdsourcing,

which makes it difficult to experiment with various parameters. In paid crowdsourcing, the

primary cost is money.

1http://www.google.com/recaptcha/
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7.2 Design Guidelines for Learnersourcing Applications

7.2.1 Passive Learnersourcing

Passive learnersourcing involves capturing meaningful learning behaviors from interaction

data. This is a challenging task because it requires carefully constructing a data processing

pipeline, which explains high-level learning behaviors and powers data-driven interaction

techniques.

A design process for passive learnersourcing used in this thesis includes the following

stages:

1. Consider an ideal situation for learning, and identify what’s currently missing (e.g.,

social recommendation, points of confusion within a clip).

2. Look at the interaction data and decide which signals can generate the needed artifact

in Stage 1 (e.g., play button clicks, in-video dropout behavior).

3. Come up with a technical solution to extract the signals in Stage 2 from the actual

data (e.g., aggregate play button click times, peak detection, curve smoothing).

4. Build this signal into the online learning user interface. Iterate on the design (e.g.,

visualize interaction peaks, recommend frequently revisited frames).

During this process, there are many design dimensions a learnersourcing designer has

to consider.

• Interaction data: Which interaction behavior can you leverage from the learner?

(e.g., clicking on the play button, dropping out from a video)

• Content data: What kind of information can you leverage from the content? (e.g.,

visual analysis of a video frame, transcript, instructor audio)

• Usage scenario: What kind of instructor’s or learner’s task do you want to support

with this data? (e.g., instructor updating their video, learner reviewing for an exam-

ple, learner skimming through a video)
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• Personal vs Collective: What if collective behavior patterns do not match with per-

sonal patterns? (e.g., In LectureScape, an important design decision was to display

both personal and collective traces because there may be differences between the

two. A participant in the lab study encountered a mismatch, and he was able to rec-

ognize that the location was not a confusing point for him but he could see why other

learners might have been confused.)

• Feedback: How should the application explain the meaning of a collective behavior

pattern to the user? (e.g., “this is where other learners were frequently confused

about”)

7.2.2 Active Learnersourcing

Active learnersourcing involves designing an explicit learning activity, with the two goals

of collecting useful information and designing pedagogically meaningful activity. This is a

challenging task because meeting both goals at the same time requires an understanding of

crowdsourcing and instructional design.

A design process for active learnersourcing used in this thesis includes the following

stages:

1. Consider an ideal situation for learning, and identify what’s currently missing (e.g.,

video outline, subgoal labels, step-level indices).

2. Identify what an individual learner can contribute to generating the needed artifact in

Stage 1 (e.g., a step label, a subgoal label, an upvote).

3. Design an activity so that it is pedagogically beneficial to the learner while generating

the expected individual outcome in Stage 2 (e.g., “summarize the section of the video

you just watched,” “which of the following best summarizes the section of the video

you just watched?”).

4. Come up with a technical solution to meaningfully aggregate the collective learner

contributions in Stage 3 (e.g., multiple stage workflow, string comparison, voting

process).
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5. Build this activity into the online learning user interface. Iterate on the design (e.g.,

add a sidebar with subgoals, add an interactive timeline).

During this process, there are many design dimensions a learnersourcing designer has

to consider.

• Motivation: How should the application incentivize learners in the task? Even if it

helps with their learning, learners still might hesitate to participate. How should the

application convey the value of the activity?

• Quality Control: How should the application prevent the gaming or spamming be-

havior? In comparison to generic crowdsourcing, spamming or minimal work be-

comes less of an issue because learners are a self-selected crowd actively trying to

learn. A bigger issue is when learners submit incorrect answers or attempt to game

the system, especially if individual contributions are visible to other learners or grad-

ing is related to the participation in learnersourcing tasks.

• Data Aggregation: How should the application process and aggregate learners’ con-

tributions? This is especially challenging in learnersourcing as opposed to generic

crowdsourcing, because learnersourcing tasks tend to be more subjective and com-

plex than simple crowdsourcing tasks.

• Interruption: What is the right amount of interruption that a learner prompt should

make? How complex should the task be?

• Presentation: How can a learner’s contribution be visible to the learner and to the

entire learner community? How should the community progress be presented?

7.3 Possible Applications Using Learnersourced Artifacts

7.3.1 Learner Engagement

Chapters 3 and 4 demonstrate how interaction data can be used to infer and improve

learner engagement. While the method used in this thesis primarily focused on interaction
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peaks from data in science and engineering MOOCs, future work can extend this work to

analyze more courses, data streams, and interaction patterns. We hope to analyze humani-

ties and professional courses, and compare results against the current data from science and

engineering courses. Another potential data stream is text from transcripts, textbooks, and

lecture slides. Text analysis can complement vision-based techniques. In contrast to peaks,

dips in viewership and interaction counts might be an informative pattern to investigate.

Dips might represent boredom and loss of interest.

7.3.2 Video Annotation

Chapters 5 and 6 present methods for extracting steps and subgoals form existing how-to

videos. What novel applications can we design once we have the extracted information?

First, better video search can be made possible with finer-grained video indices and labels.

For example, ingredient search for cooking or tool name search for Photoshop can show all

videos and time points that cover a specific tutorial element. Furthermore, video players

can present alternative examples to a current step. If a learner is watching how to apply the

eyeliner, the interface detect steps and subgoals from other videos that involve the eyeliner,

and snow snippets from other videos that include demonstrations of the eyeliner. This

allows the learner to hop between different use cases and context for the step of interest,

which can potentially improve learning outcomes.

We believe the Find-Verify-Expand workflow presented in Chapter 5 can generalize to

annotating broader types of metadata beyond steps from how-to videos. For example, from

a soccer video this pattern can extract goal moments with Find and Verify, and then use

Expand to include a crucial pass that led to the goal, or a ceremony afterward. Generally,

the pattern can extract metadata that is human-detectable but hard to completely automate.

It is a scalable method for extracting time-sensitive metadata and annotating streaming

data, which can be applied to video, audio, and time-series data.
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7.4 Generalizing Learnersourcing

The core idea of learnersourcing is that with an inherently motivated crowd, we can design

applications in which small contributions from members of a crowd can create artifacts

that directly benefit the crowd. It is possible to expand the definition of learnersourcing

to a broader community context. This section attempts to explore how the idea of learner-

sourcing might generalize to domains beyond education.

I have explored the domains of collaborative planning and civic engagement, in which a

community of users perform inherently meaningful tasks while collaborating in the sense-

making and content generation process.

7.4.1 Community-driven conference scheduling

The onus of large-scale event planning often falls on a few organizers, and it is difficult to

reflect the diverse needs and desires of community members. The Cobi project engages an

entire academic community in planning a large conference. Cobi elicits community mem-

bers’ preferences and constraints, and provides a scheduling tool that empowers organizers

to take informed actions toward improving the schedule [90]. Community members’ self-

motivated interactions and inputs guide the conflict resolution and schedule improvements.

Because each group within a community has different information needs, motivations, and

interests in the schedule, we designed custom applications for different groups: Frenzy [30]

for program committee members to group and label papers sharing a common theme; au-

thorsourcing [90] for paper authors to indicate papers relevant to theirs; and Confer [13]

for attendees to bookmark papers of interest. Cobi has scheduled CHI and CSCW, two of

the largest conferences in HCI, since 2013. It has successfully resolved conflicts and incor-

porated preferences in the schedule, with input from hundreds of committee members, and

thousands of authors and attendees.

7.4.2 Budgetary discussion support for taxpayers

A lot of community practice and civic issues matter to members, but the decision process

and complicated structure are often not accessible to the members. The conceptual idea
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behind learnersourcing presents a technique for engaging community members in the pro-

cess, while members engage in natural or voluntary or intrinsically motivated activities.

The extensiveness and complexity of a government budget hinder taxpayers from under-

standing budgetary information and participating in deliberation. In an interdisciplinary

team, I helped build interactive and collaborative web platforms in which users can con-

tribute to the overall pulse of the public’s understanding and sentiment about budgetary

issues. Factful [87] is an annotative news reading application that enhances the article with

fact-checking support and contextual budgetary information. Users’ fact-checking requests

and results are accumulated to help future users engage in fact-oriented discussions. Bud-

getMap [91] allows users to navigate the government budget with social issues of their

interest. Users can make links between government programs and social issues by tagging.

In our 5-day live deployment, more than 1,600 users visited the site and made 697 links

between social issues and budget programs.

Both examples presented above follow the learnersourcing model in that they create

a virtuous feedback loop in which users engage in microtasks to contribute to generating

community artifacts. In Cobi, paper authors provide useful information for scheduling,

while they learn about relevant papers in the community. In BudgetMap, taxpayers pro-

vide useful tagging information for budget items, while they learn about the budget with

improved awareness. In addition to the domains discussed above, the conceptual idea in

learnersourcing can generalize to various social domains such as open government, nutri-

tion, healthcare, and accessibility, just to name a few. In these domains, we can design

novel community-driven workflows and interfaces to support planning, discussion, deci-

sion making, and creative processes.

7.5 Limitations of Learnersourcing

This section offers reflections on the limitations of learnersourcing.
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7.5.1 Complexity of Tasks and Outputs

Active learnersourcing tasks inherently interrupt learners to provide input to the system.

When carefully designed, these tasks can lead to an improved learning experience, but

there is a danger of distracting learners from their main task of watching the video. This

constraint puts an upper bound in the amount of interruption that can be made in active

learnersourcing tasks. A tradeoff involved in designing an active learnersourcing task is

between the amount of interruption in prompting and learner motivation. There is also a

related tradeoff between the amount of useful information collected from each learner and

learner motivation. As the task gets complicated and takes longer, the learner is less likely

to pick up the task. A general rule of thumb is as follows: the more aligned the task is with

the main learning material, the more likely that the learner will be engaged in the task.

7.5.2 Data Blindness

Passive learnersourcing relies on massive amounts of learning interaction data, such as

clickstream data from the video player. Because video interaction logs only reflect click

behaviors, they are not a perfect proxy for learners’ true engagement and learning. Even

if significant trends are identified, drawing causality beyond correlation may be extremely

difficult.

This is a tradeoff that needs to be considered: while data in passive learnersourcing

can be relatively easily collected with no interruption, its explanatory power is weaker than

data from learners’ explicit input or observations made in person. A potential solution is

to combine passive and active learnersourcing in a single application, in a way that the two

models complement each other.

7.5.3 Privacy

Any interaction design methodology that feeds users’ data back into the design should be

careful about privacy. In deploying the data-driven video techniques, it would be essential

to inform users of the exact data that is being collected, and present what benefits they

can expect by opting-in to contribute their data. This is perhaps not a severe problem in



178 CHAPTER 7. DISCUSSION

LectureScape, because it only collects anonymized, aggregated usage data. But as future

learnersourcing application designers wish to provide more personalized support, privacy

concerns should be carefully addressed in the design stage.

7.5.4 Is This a Temporary Solution?

As artificial intelligence advances, it may be possible to generate many of the results pre-

sented in the thesis automatically. For instance, what if there is a powerful computer vision

and natural language processing technique for accurately summarizing a video? Does that

make learnersourcing obsolete? Is learnersourcing a temporary solution until automated

solutions become feasible?

I would argue that learnersourcing is still valuable even with the presence of powerful

automated solutions. The value of learnersourcing comes from the participation aspect: en-

gaging in learnersourcing directly rewards the participant with improved learning, sense of

community, and better navigation experience. For this reason, in Crowdy, we still prompt

learners with the learnersourcing questions even after the video is fully labeled with sub-

goals. Indeed, automated solutions can be used in combination with learnersourcing in

several ways. First, learnersourcing can provide high quality training data for machine

learning methods. Second, automated solutions can be used to grade or provide feedback

to learners as they complete their learnersourcing tasks. Finally, automated solutions can

be used to generate adaptive and personalized learnersourcing prompts.
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Conclusion

This dissertation introduced learnersourcing: a novel crowdsourcing model in which users’

lightweight contributions improve content and interfaces for future learners. To conclude,

this chapter will summarize the main contributions of the thesis and propose important

directions for future research.

8.1 Summary of Contributions

Broadly, this thesis makes contributions in crowdsourcing, learning at scale, and video

interaction.

• Crowdsourcing: novel workflows for extracting semantic and complex information

from videos; and decomposition patterns that are designed to provide pedagogical

benefits to crowd workers engaged in the task.

• Learning at scale: a virtuous feedback loop in which learners’ improved learning

experience in turn generates useful artifacts for future learners; MOOC-scale data

analyses of click-level video interaction; and novel systems for improving the status

quo in video learning at scale, with improved interactivity and sense of community.

• Video interaction: video interaction techniques powered by user-generated data;

and video interfaces that dynamically evolve over time as more users interact with

the content.
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8.2 Future Directions

Learnersourcing can serve as an enabling technology for the next-generation learning plat-

forms and learning at scale research. Further, this conceptual idea can be applied to broader

societal context to lower the barrier to individuals’ participation and impact within a com-

munity, by engaging them in activities meaningful to both themselves and the community.

8.2.1 Innovative Learnersourcing Applications

I envision more advanced learnersourcing applications that enable more constructive and

interactive video learning experience at scale. While the active learnersourcing examples

in this thesis used how-to videos covering procedural tasks, a similar workflow can be

applied to lecture videos on MOOCs that are much less structured than how-to videos.

Collaborative summarization on lecture videos might be a useful exercise for learners that

deeply engage them in the learning process. Further, learnersourcing workflows can be

designed for synchronous, direct interaction between learners, which can result in more

complex and creative outcomes. For example, learners who are on the same video page

can be given an opportunity to watch the video together and work on creating an outline

together.

Another promising future direction is to push the boundaries of learnersourcing by

broadening the application scope and domain. For instance, learners can be asked to submit

their own version of explanation as a video clip. This gives learners a chance to self-explain,

while the collected explanations can enable multiple learning paths and personalization for

future learners. A technical challenge will be in interpreting and labeling multimedia inputs

from learners. Another avenue for future research is supporting diverse problem domains: a

programming environment that learnersources code snippets and documentation; a writing

tool that learnersources alternate expressions and phrases for inspiration and learning; and

a graphical design tool that learnersources visual assets other learners can extend.
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8.2.2 Learning Platforms of the Future

While existing online learning platforms have provided access to more learners, the learn-

ing experience is still limited to passively watching videos and answering canned questions.

I envision educational technologies that truly scale: a course that is created, organized, and

taught entirely by learners. Learners will actively engage in 1) creating various artifacts

including quizzes, explanations, and examples, 2) providing feedback and iterating on the

artifacts, and 3) labeling the artifacts with metadata for better search and organization. With

a learnersourced course that builds itself, learners are at the center of both the instructional

design and learning experience.

8.2.3 Science of Learning at Scale

Despite the rapid growth, we do not yet have good answers to whether, what, how, and why

people learn in massive learning platforms. The field needs to develop theories, instruc-

tional guidelines, and design principles for learning at scale settings. This research direc-

tion calls for formal and data-driven frameworks for conducting controlled experiments and

adaptively modifying the learning interface. The frameworks can help researchers experi-

ment with various learnersourcing models in vivo, with different video formats, interaction

patterns, learner prompts, and adaptation techniques. These efforts will spur the design

of new instructional formats and technologies, which in turn can advance the emerging

science of learning at scale.

8.2.4 Sociotechnical Application Design

Learnersourcing is a novel application of crowdsourcing to lower the barrier to participa-

tion for individuals within a community. I believe this framework has potential for broader

societal impact. Novel coordination and incentive mechanisms can be designed for broader

domains including civic engagement, healthcare, and accessibility. We need to investi-

gate generalizable design principles and computational methods applicable across multiple

domains. Furthermore, the idea of learnersourcing can be extended to capture community

interactions beyond clickstream and answers to given prompts. How can we capture discus-
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sion, collaboration, decision making, and creative processes by individuals and groups at

scale? Learnersourcing presents a promising vision for involving members of a community

in collectively creating artifacts and value beneficial to the community.



Appendix A

Materials for the LectureScape Study

This chapter presents the study tasks and questionnaires used in a laboratory study de-

scribed in Chapter 4.

The tasks and their instruction given to participants are presented below. Part 1 is

Visual search tasks, which asked participants to find a specific piece of visual content in

a video. Part 2 is Problem search tasks, which asked participants to find an answer to a

given problem. Part 3 is Summarization tasks, which asked participants to write down the

main points of a video while skimming through it. For each task type, we counterbalanced

the order of the interfaces and the assignment of videos to tasks.

A.1 Study Task Part 1.

Instruction: You might remember something from a video you already watched, and want

to go back to that part for review. In this task, your goal is to find a point in the video that

contains the given information.

A.1.1 Task A.

This video is about branching programs. From this video, find a slide where the instructor

displays on screen what “elif” in Python stands for. Pause the video where the answer is

visible.
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Video link: https://www.youtube.com/watch?v=FMGal3lXcjw

A.1.2 Task B.

This video is about tuples. From this video, find a slide where the instructor displays on

screen examples of the singleton operation. Pause the video where the answer is visible.

Video link: https://www.youtube.com/watch?v=d-SBFpxf8Bk

A.1.3 Task C.

This video is about floating point accuracy. From this video, find a slide where the instruc-

tor displays on screen the equation abs(x-y) ¡ 0.0001. Pause the video where the answer is

visible.

Video link: https://www.youtube.com/watch?v=jq7Sujh5uDA

A.1.4 Task D.

This video is about understanding root finding. From this video, find a slide where the

instructor displays on screen the abstraction property of functions. Pause the video where

the answer is visible.

Video link: https://www.youtube.com/watch?v=mylsICZfBpo

A.2 Study Task Part 2.

Instruction: Let’s assume that a fellow learner posted a question on the discussion forum.

You want to post an answer to the question by watching a video on the topic. Your goal

is to find a point in the video that contains an answer to the problem. You do not need to

provide related context or background information for this task. A final answer will suffice.

https://www.youtube.com/watch?v=FMGal3lXcjw
https://www.youtube.com/watch?v=d-SBFpxf8Bk
https://www.youtube.com/watch?v=jq7Sujh5uDA
https://www.youtube.com/watch?v=mylsICZfBpo
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A.2.1 Task A.

This video is about approximation methods. Approximation methods generate a number

of different guesses that differ by a small amount (step). They help reach an answer that is

close enough to the exact answer.

You want to answer the following question: “If the step size in an approximation

method decreases, does the code run faster or slower?” Please find a part in the video that

discusses the relationship between the step size and the amount of code execution required

to find a solution.

Note that you need to both 1) find the part in the video that contains the answer, and 2)

provide your answer.

Video link: https://www.youtube.com/watch?v=pGd3WqZK4Cg

A.2.2 Task B.

This video is about bisection search. Bisection search works by cutting the size of the range

of values to search in half. It reduces the computation time by making smart guesses.

You want to answer the following question: “Would bisection search work well if the

value we’re estimating grows as the input value grows?” Please find a part in the video

that discusses the relationship between the function ordering and the feasibility of using

bisection search.

Note that you need to both 1) find the part in the video that contains the answer, and 2)

provide your answer.

Video link: https://www.youtube.com/watch?v=Zoy7t4LbAPY

A.3 Study Task Part 3.

Instruction: For this video, you’re only given three minutes to skim through it. While you

skim, please summarize the main points of the video for other learners to review later.

The researcher will give you 1-minute and 30-second warnings. Please write down your

summary points below. Note that your summary should be in phrases, not just keywords.

https://www.youtube.com/watch?v=pGd3WqZK4Cg
https://www.youtube.com/watch?v=Zoy7t4LbAPY
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• (O) “iterative algorithms capture states that update on each loop.”

• (X) “iterative algorithms”

A.3.1 Task 7. (your answer below)

Video link: https://www.youtube.com/watch?v=qic9_yRWj5U

A.3.2 Task 8. (your answer below)

Video link: https://www.youtube.com/watch?v=lTnTlmM33dA

A.4 Post-Task Questionnaire

The following questionnaire was given to participants after each task.

• What is your participant ID?

• What is the ID of the task that you just completed?

• How confident are you in your answer? (1: Not really, 7: Very much)

• Have you watched this video before?

– Yes, multiple times.

– Yes, once.

– Yes, but I skimmed.

– No.

– I can’t remember.

• If you answered ”Yes” to the previous question, how much did you remember from

the video before doing this task? (1: Nothing, 7: Everything)

https://www.youtube.com/watch?v=qic9_yRWj5U
https://www.youtube.com/watch?v=lTnTlmM33dA
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A.4.1 Workload Assessment

The following assessment is used to measure your personal opinion on how much workload

was required of you during the task you just completed.

Mental Demand

How mentally demanding was the task? (1: Very low, 7: Very high)

Physical Demand

How physically demanding was the task? (1: Very low, 7: Very high)

Temporal Demand

How hurried or rushed was the pace of the task? (1: Very low, 7: Very high)

Performance

How successful were you in accomplishing what you were asked to do? (1: Perfect, 7:

Failure)

Effort

How hard did you have to work to accomplish your level of performance? (1: Very low, 7:

Very high)

Frustration

How insecure, discouraged, irritated, stressed, and annoyed were you? (1: Very low, 7:

Very high)

A.5 Post-Study Questionnaire

The following questionnaires were given to participants after all main tasks.
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A.5.1 Questionnaire for the baseline interface

During the study, the baseline interface was simply referred to as Interface #1. All questions

are asked in a 7-point Likert scale, with 1 indicating strongly disagree and 7 indicating

strongly agree.

Instruction: Refer to the print out of an interface screenshot that says ”Interface #1”.

This questionnaire gives you an opportunity to tell us your reactions to the interface.

Your responses will help us understand what aspects of the interface you are particularly

concerned about and the aspects that satisfy you. To as great a degree as possible, think

about all the tasks that you have done with the interface while you answer these ques-

tions. Please read each statement and indicate how strongly you agree or disagree with the

statement.

1. Overall, I am satisfied with how easy it is to use this system.

2. It was simple to use this system.

3. I can effectively complete my work using this system.

4. I am able to complete my work quickly using this system.

5. I am able to efficiently complete my work using this system.

6. I feel comfortable using this system.

7. It was easy to learn to use this system.

8. I believe I became productive quickly using this system.

9. The interface of this system is pleasant.

10. I like using the interface of this system.

11. This system has all the functions and capabilities I expect it to have.

12. Overall, I am satisfied with this system.

For watching online lecture videos generally, not just for the study tasks today, how

useful do you think the various features are in this interface?

Please refer to the printed interface screenshot to see what each feature is.

1. Timeline display

2. Timeline clicking and dragging
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3. Thumbnail preview

4. Play / Pause button

5. Time display

6. Volume control

7. Transcript text

8. Interactive transcript (automatic scrolling and highlighting current line)

9. Keyword search

Please leave any comments about this interface. (strengths and weaknesses)

A.5.2 Questionnaire for LectureScape

During the study, the LectureScape interface was simply referred to as Interface #2. All

questions are asked in a 7-point Likert scale, with 1 indicating strongly disagree and 7

indicating strongly agree.

Instruction: Refer to the print out of an interface screenshot that says ”Interface #2”.

This questionnaire gives you an opportunity to tell us your reactions to the interface.

Your responses will help us understand what aspects of the interface you are particularly

concerned about and the aspects that satisfy you. To as great a degree as possible, think

about all the tasks that you have done with the interface while you answer these ques-

tions. Please read each statement and indicate how strongly you agree or disagree with the

statement.

1. Overall, I am satisfied with how easy it is to use this system.

2. It was simple to use this system.

3. I can effectively complete my work using this system.

4. I am able to complete my work quickly using this system.

5. I am able to efficiently complete my work using this system.

6. I feel comfortable using this system.

7. It was easy to learn to use this system.

8. I believe I became productive quickly using this system.

9. The interface of this system is pleasant.
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10. I like using the interface of this system.

11. This system has all the functions and capabilities I expect it to have.

12. Overall, I am satisfied with this system.

Other learners’ watching history

Please answer the following questions about seeing how other learners watched the same

video.

1. ”Interaction peaks” affected my video navigation during the tasks.

2. ”Interaction peaks” matched with my personal points of interest in the video.

3. Other learners’ watching history was easy to understand.

4. Other learners’ watching history was informative.

5. It was enjoyable to see other learners’ watching history in a video.

6. Seeing other learners’ watching history in a video was useful.

7. Why do you think ”interaction peaks” occur?

For watching online lecture videos generally, not just for the study tasks today, how

useful do you think the various features are in this interface?

Please refer to the printed interface screenshot to see what each feature is.

1. Timeline display

2. Timeline clicking and dragging

3. Highlighting interaction peaks

4. Thumbnail preview

5. Personal watching history visualization

6. Play / Pause button

7. Time display

8. Volume control

9. Adding bookmarks

10. Transcript text

11. Interactive transcript (automatic scrolling and highlighting current line)

12. Keyword search
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13. Search result highlights below the timeline

14. Search result ranking

15. Word cloud above the player

16. Screenshot highlights at the bottom

17. Pinning a screenshot for a side-by-side view

Please leave any comments about this interface. (strengths and weaknesses)
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Appendix B

Materials for the ToolScape Study

This chapter presents the study tasks and questionnaires used in a laboratory study de-

scribed in Chapter 5.

B.1 Post-Task Questionnaire

The following questionnaire was given to participants at the end of each design task. The

questions used a 7-point Likert scale, with 1 indicating strongly disagree and 7 indicating

strongly agree.

Instruction: Please answer the following questions about your experience in this design

task.

B.1.1 Overall Experience

• The task was difficult to perform.

• The quality of my final image is high.

B.1.2 Video Browsing Interface

• It was easy to use.

• It was easy to understand.
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• It was enjoyable.

• It was informative.



Appendix C

Materials for the Crowdy Study

The following questions were used as a pretest and posttest material, which were asked

before and after participants watched the video.

Q1 You have found the following ages (in years) of all 6 lions at your local zoo: 11, 5,

12, 5, 7, 2 What is the standard deviation of the ages of the lions at your zoo? Please use

the calculator. You may round your answers to the nearest tenth.

Q2 Listed below are two sample data sets, A and B. Which data set has the larger

standard deviation? (Hint: you can answer this question by inspecting the two data sets

without calculating the actual standard deviation.)

Data Set A: 1, 2, 3, 4, 5, 6, 7, 8, 9

Data Set B: 8, 9, 9, 9, 10, 11, 11, 12

1. A

2. B

3. They have the same standard deviation.

4. Cannot be answered with the given information.

Q3 What is the relationship between the variance of a set of scores and the standard

deviation of those scores?
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1. standard deviation = (variance)2

2. variance = (standard deviation)2

3. variance = mean/standard deviation

4. standard deviation = mean/variance

Q4 If the variance of a distribution is 9, the standard deviation is:

1. 3

2. 6

3. 9

4. 81

5. impossible to determine without knowing n.

Q5 The standard deviation of a group of scores is 10. If 5 were subtracted from each

score, the standard deviation of the new scores would be

1. 2

2. 10/25

3. 5

4. 10

Q6 The population standard deviation of the following five numbers 3,3,3,3,3 is:

1. 0

2. 3

3. 9
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4. 11.25

5. 45
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