
How a Freeform Spatial Interface
Supports Simple Problem Solving Tasks

Eser Kandogan, Juho Kim
+
, Thomas P. Moran, Pablo Pedemonte*

IBM Research - Almaden
650 Harry Rd.

San Jose, CA 95120
{eser,tpmoran}@us.ibm.com

+MIT CSAIL
32 Vassar St.

Cambridge, MA 02139
juhokim@mit.edu

*IBM Argentina
Ing. Butty 275 – C1001 AFA
Buenos Aires, Argentina
ppedemon@ar.ibm.com

ABSTRACT

We developed DataBoard, a freeform spatial interface, to
support users in simple problem solving tasks. To develop a
deeper understanding of the role of space and the tradeoffs
between freeform and structured interaction styles in
problem solving tasks, we conducted a controlled user
study comparing the DataBoard with a spreadsheet and
analyzed video data in detail. Beyond improvements in task
performance and memory recall, our observations reveal
that freeform interfaces can support users in a variety of
ways: representing problems flexibly, developing strategies,
executing strategies incrementally, tracking problem state
easily, reducing mental computation, and verifying
solutions perceptually. The spreadsheet also had advantages,
and we discuss the tradeoffs.

Author Keywords

Spatial Interfaces, Freeform Interaction, Problem Solving,
Spreadsheets.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms

Human Factors

INTRODUCTION

Everyday we need to solve simple problems and make
practical decisions at home and at work, from making the
wedding invitation list, to arranging schedule for a
customer visit, and distributing work items in a group.
Often such decisions involve a number of items to be
organized or categorized to further the work and deal with

constraints, for example, assigning software defects to
developers in a balanced way considering the priority and
difficulty of the defects, among other factors.

Spreadsheets are often used for such problems to enable
people to lay out information in a table to help them make
decisions (often collaboratively). Using a spatial
representation, such as a table, engages people’s natural
spatial and perceptual skills to simplify choice, perception,
and mental computation [12]. Spreadsheets allow users to
arrange data in rows and columns, sort, and perform
calculations. Pen and paper or sticky notes on whiteboards
are also commonly used to solve small problems on the spot
[4]. Freeform interfaces mimic paper or board in the sense
that they aim to provide a fluid natural interaction space to
arrange information flexibly without the constraint of a
table, as in spreadsheets. Freeform graphical, multi-modal,
and tangible interfaces have been introduced to support
users in tasks that require flexibility such as note-taking,
brain-storming, and collaborative design, with varying
degrees of costs and benefits [1,3,7,8]. Both freeform and
structured spatial interfaces have their upsides as well as
downsides. The tradeoff between freeform and structure is
the main theme throughout this paper.

We are developing DataBoard to occupy a potential sweet-
spot in the spectrum of spatial interfaces, specifically
geared towards simple problem solving tasks. Users can jot
down information related to their tasks in a freeform
manner anywhere in the space in a simple point-click-type
style. Yet, they can also arrange information into lists, piles,
and tables and flexibly move items between them. For
example, when making a wedding invitation list, one might
begin by jotting down names of people, quickly organize
them into lists of the brides’ and grooms’ side, personal or
work friends, and local or remote people, and reorganize
them to satisfy desired constraints flexibly.

As we continued to consider different use cases and add
new features to DataBoard, a fundamental question kept
coming: How, if at all, does freeform interaction help users,
especially in problem solving tasks? To directly investigate
that question, we conducted a controlled study to compare a
very basic version of DataBoard as a freeform interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05...$5.00.

(with the ability to snap objects into lists) with a
spreadsheet interface as a structured interface.

Our aim was not just to compare two different interfaces in
terms of task performance, but to develop a deeper
understanding of the role of space, spatial interaction, and
the features of freeform and structured interfaces in
problem solving tasks. We carried out a detailed analysis of
video data collected during the experiment. Our results
show that a freeform spatial interface enables better task
performance and memory recall than a tabular interface.
From our detailed observations, we argue that freeform
interaction enabled participants to (1) flexibly represent
attributes of the problem in the freeform space in order to
better develop strategies; (2) execute their strategies
incrementally, easily tracking state as they proceeded; and
(3) easily verify and tweak their solutions.

In this paper we briefly describe DataBoard, present our
study method and findings, describe our observations in
depth, and discuss how freeform interaction supports
problem solving.

RELATED WORK

Spatial Interfaces

GUIs are inherently spatial interfaces, and they vary on the
spectrum of freeform vs. structured interactions. Desktop
systems, for example, offer some level of freeform
interaction in that users can move objects anywhere on the
desktop. On the other hand, modern spreadsheets such as
Microsoft ExcelTM provide a tabular layout and allow users
to organize, transform, and visualize data only within a
table.

Some tasks, particularly those creative in nature, are
potentially better suited for freeform interactions, such as
brainstorming [7], mind-mapping [17], planning, design [4],
note taking [8], collaborating in the workplace [18], and
organizing photos [11]. Freeform interactions could foster
the creative process by allowing the users to rapidly
externalize thoughts without the constraints imposed on the
use of space and transform them informally into useful
organizations [1,2, 22]. For example, Microsoft OneNoteTM,
a planning and note taking application, allows users to
create several types of information and place them
anywhere on the page. In OneNote users can also create
lists or tables, and place them anywhere on the page, if they
need to provide some structure to content created. Unlike
DataBoard, however, desired structure needs to be
predetermined, in that users start by creating a list, and
adding information to it. Whereas in DataBoard users can
simply start creating pieces of information and combine
them into lists and tables as they work, and flexibly move
them between lists. Another way to structure information is
using page-level templates (as in Microsoft PowerPointTM),
while still giving the user flexibility to organize information.

Space and Cognition

The distributed cognition literature emphasizes the
importance of space and external representations in
problem solving [23,24], wherein space can be intelligently
utilized to generate and arrange external representations to
aid problem solving by simplifying choice, utilizing
perception, and minimizing internal computation [12].
Because most problems are difficult to solve only with
internal (mental) representations, people often externalize
information to distribute the cognitive overhead. In doing
so, the nature of the representation used in problem solving
can dramatically affect how people think about the
problems and how long they take to solve them [23]. There
is also a variety of work on how people code, use, and
manipulate spatial information [16]. Manipulation can be
epistemic, in that it does not directly improve the current
state to be closer to the goal state, in contrast to pragmatic
steps taken to solve a problem directly [13].

Use of space in regards to recall is also well-studied
[9,10,21]. Studies of office workers to locate items in their
offices identified different strategies people use for filing
and retrieving information [15]. Other studies suggest that
relying on location information alone for recall may be
insufficient [10], especially if organization was not based
on some logical structure [14]. However, user involvement
in organizing the space helps recall [19].

DATABOARD

We designed DataBoard, a web-based freeform spatial
interface, to help users in everyday problem solving tasks.
The motivating example was management of software
defects in our group. We found that the web-based defect
tracking system we have been using with its rigid tabular
interface was severely limiting for reviewing, categorizing,
prioritizing, and distributing defects to team members
during our weekly meetings.

The central idea of DataBoard is to enable users to organize
and augment semantically-meaningful “domain objects” (as
in [18]) such as defects in software development. Domain
data is imported from a specialized application and laid out
on DataBoard, where the user can interact within a freeform
space, creating organizing structures (such as lists) and
modifying underlying data as a result of such spatial
interactions; and finally exporting the updated objects back
to the application. For example, in our group meeting, we
can import defects into a list on the board and then use the
freeform space to “play” with them to represent their
importance and urgency and discuss how they relate to each
other. Then, at the end of the meeting we prioritize and
assign them to the members of the team.

Using DataBoard users can create simple text, images, links,
person objects by simply pointing anywhere on the layout,
clicking and typing text, URLs, email addresses, which
could be used to automatically create objects of different
types (Figure 1). For example, an email address would be
automatically mapped to a person using company address

book and transformed into a Person object. Users can also
create arbitrary user-defined objects with a simple syntax of
name-value pairs. Finally, users can organize these objects
into lists and piles, if they wish to. For the purposes of this
paper, we will not go into much detail of DataBoard, but
rather focus on the study and observations on the use of
space and spatial interaction in problem solving.

STUDY

The promise of freeform spatial interfaces, like
DataBoard’s, was quite intriguing and seemed to apply to a
lot of other everyday small-scale problem solving tasks.
Thus, we wanted to develop a deeper understanding of how
the use of space and freeform interaction contributed to our
improved problem solving. To that end we designed a
controlled study to see if there are performance
improvements over tabular interfaces, and we especially
wanted to pinpoint what aspects of the freeform spatial
interaction contributed to that effect by carefully observing
people behavior in problem solving tasks.

Hypotheses

In this experimental study we tested three hypotheses:

H1. Task Performance. Freeform spatial interaction will
lead to shorter task performance times in problem-solving
tasks over tabular spreadsheet based interfaces.

H2. Solution Quality. Freeform spatial interaction will
lead to better solution quality in problem-solving tasks over
tabular spreadsheet based interfaces.

H3. Memory Recall. Freeform spatial interaction will lead
to better recall in problem-solving tasks over tabular
spreadsheet based interfaces.

Design

A repeated measures within-subjects design was used in the
experiment. The independent variables were Interface
(Spreadsheet, DataBoard) and Task Type (Balancing,
Scheduling). The dependent variables were Task
Performance Time, Solution Quality, and Memory Recall
Errors.

Each participant was brought in one at a time, and
performed four tasks, two balancing and two scheduling
tasks, one on DataBoard and one on Google Spreadsheet.
The balancing task was to distribute a set of objects into
three groups based on two attributes of the objects such that
the number of objects in each group would be equal with
attribute values balanced across groups. For example, given
18 software defects, the task was to assign these defects to
three developers such that each would get an equal number
of defects, where the distribution of defect priorities and the
sum of difficulties would be balanced across developers. In
the DataBoard case, participants started with an initial set of
defects and they were tasked with moving these defects into
three groups with a header of the developer’s name (Figure
2). In the Spreadsheet, likewise participants started with an
initial set of defects and they were tasked with assigning
them to developers by filling in the developer column with
A, B, or C (Figure 8).

The scheduling task was to order a set of objects in two lists
based on dependencies between objects and another
attribute of the objects. For example, given 8 defects, with
different dependencies and priorities, the task was to assign
these defects to two developers such that dependencies
were observed and preference was given to higher priority
defects. As such, unlike the balancing task, the order of the
objects in the scheduling task was important. In the

Figure 2. Balancing Task in DataBoard for Defect domain.

Participants assigned defects to three developers by moving

them from the original list on the left into one of the lists for a

developer (enlarged in blue dotted lines)

Figure 1. DataBoard

supports users to

create simple text,

images, links, person,

and user-defined

objects on a two-

dimensional layout

flexibly through simple

point-click and type.

Users can move objects

to snap to or overlap

each other to organize

them into lists and

piles, respectively.

DataBoard case, participants started with an initial set of
defects and they were tasked with moving these defects into
two lists with a header of the developers’ name. In the
Spreadsheet, likewise participants were tasked with
assigning defects to developers by filling in the developer
column with A or B and determining the order by typing 1,
2, 3, or 4.

To reduce an order effect in performance for the second
interface, a parallel task domain was used on the second
interface. For example, if the first domain was the software
defects, the second interface used the class domain, where
in the balancing tasks participants balanced the class load
for three professors based on class difficulty and level
(PhD, MS, and BS). The scheduling task in the class
domain was about registering for classes based on
prerequisites and class levels. Each task domain had the
same number of objects (e.g. defect vs. class) and same
number of groups/lists to distribute to (e.g. three professors,
three developers) and tasks were isomorphic in terms of
complexity.

The order of interfaces and tasks were counter-balanced.
For example, participant S1 did balancing task first with
Spreadsheet and then with DataBoard and scheduling task
first with DataBoard and then with Spreadsheet. Participant
S2 had the tasks the other way around. Participant S3 had
the interfaces the other way around. The order of task
domain was also counter-balanced.

Task Performance was measured with a stop-watch, started
and stopped with the explicit command of the participant.
The Solution Quality was assessed by experimenters and
measured by the minimum number of steps to reach to a
solution that satisfied all constraints of the task (e.g.
balance of defect distribution based on priority and
difficulty). Memory Recall tasks were given immediately
after each session and inquired about the state of the
participant’s solution, such as the number of Ph.D. level
classes for professor A. Different tasks were given at the
end of each session to limit potential preparation. Memory
Recall was measured by the absolute difference of the
participants answer with the correct answer, ranged from 0
to 3, 0 being the perfect match. Participants who couldn’t
answer the memory recall task were given 3, which was the
maximum possible distance from the correct answer.
Memory Recall tasks were added later on as an afterthought
thus only 12 participants were able to perform these tasks.

Procedure

Before starting the experiment, participants were briefed
about the study and procedures to be used. They were
assured that the experiment was measuring the
effectiveness of the interface conditions not their own
abilities to solve problems. With their permission, all
experiment sessions were recorded on video in HD format
to facilitate in-depth study of the strategies and actions. All
sessions took place in a quiet study room.

Participants filled out a pre-questionnaire on their
experience with spreadsheets, software development, and
bug tracking systems. Afterwards, participants took a 3-
minute spatial ability test, which contained Cards Rotation
Tests [6]. Next, participants received a five-minute training
on both interfaces, and reviewed features like sort and
column/row move in Spreadsheet, and object selection,
move, and list interaction in DataBoard. Participants then
performed a training task on both interfaces to have hands-
on experience using the interfaces in problem solving tasks.

Each experiment session consisted of four tasks, where
participants performed two balancing and two scheduling
tasks using the Spreadsheet and DataBoard interfaces.
Before each session participants were reminded to think
aloud, which they did to varying degrees. After reading the
instructions for a particular session, participants were asked
about their strategy in order to help them think in advance
about the problem in order to minimize the effects of
variances in strategy planning on task performance. It also
helped to ensure that the problem was well-understood.

After each session participants were immediately asked to
perform a quick memory recall task, followed by a
subjective evaluation of the task difficulty and interface
appropriateness for the current session. Upon completion of
all the experiment sessions, participants filled an online
post-questionnaire, where they answered questions to
discuss features of Spreadsheet and DataBoard which
supported or hindered their task performance, compare task
difficulties in both interfaces, and whether and why they
used external aids such as paper.

Participants

18 volunteers (7 female, 11 male) participated in the
experiment. Participants ranged in ages from mid 20s to
mid 40s, had an average skill level of 3.5 (1: novice, 5:
expert) in spreadsheet use, 3.6 in software development,
and 2.6 in bug tracking system use. Participants were a mix
of college students and professionals with backgrounds on
several fields of science, including computer science,
physics, and social sciences. Participants received a lunch
coupon in exchange for their help in the experiment.

Apparatus

Both conditions of the experiment were conducted on a web
browser, displayed on a 20” LCD flat panel display in full-
screen mode. Participants were given the option to use a
mouse, a trackpoint, or a touchpad as the pointing device
and pen and paper to use in their tasks.

RESULTS

Task Performance

The mean task performance times for the balancing task
were 323.4 sec. (SD=206.6) with Spreadsheet and 231.5 sec
(SD=143.6) with DataBoard, and for the scheduling task,
198.5 sec. (SD=81.8) with Spreadsheet and 142 sec.
(SD=104.5) with DataBoard (Figure 3).

Repeated measures analysis of variance showed a main
effect of Interface (FInterface(1,32) = 8.77, p < 0.01) thus
suggesting H1 is supported. No impact of interface order
was observed on task performance (FInterface*InterfaceOrder(1,32)
= 0.12, p > 0.5). ANOVA on spatial ability incorporated as
a covariant did not yield a significant difference
(FInterface*SpatialAbility(1,31) = 0.17, p > 0.5).

Solution Quality

Mean solution quality (as measured by minimum number of
steps to satisfy all problem constraints from the
participant’s final solution) for the balancing task were 0.61
(SD=0.92) with Spreadsheet and 0.33 (SD=0.77) with
DataBoard, and for the scheduling task, 0.94 (SD=1.06)
with Spreadsheet and 0.72 (SD=1.07) with DataBoard.
Repeated measures analysis of variance showed no main
effect of Interface (FInterface(1,34) = 1.35, p > 0.2) thus
suggesting H2 is not supported.

Memory Recall

Mean memory recall errors for the balancing task were 0.83
(SD=0.83) with Spreadsheet and 0.42 (SD=0.9) with
DataBoard, and for the scheduling task, 1.5 (SD=1.24) with
Spreadsheet and 0.67 (SD=0.98) with DataBoard (Figure
3). Repeated measures analysis of variance showed a main
effect of Interface (FInterface(1,22) = 4.84, p < 0.05) thus
suggesting H3 is supported. Note memory recall tasks were
only conducted on 12 participants.

Subjective Evaluation Ratings

Subjects rated task difficulty for each interface after each
session on a scale of 1 to 5 (1: very hard, 5: very easy).
Mean ratings of the balancing task were 2.56 (SD=1.38)
with Spreadsheet, and 3.44 (SD=0.98) with DataBoard, and
of the scheduling task, 3.0 (SD=0.77) with Spreadsheet and
3.72 (SD=0.67) with DataBoard, with a main effect of the
Interface (Kruskal-Wallis (KW), p < 0.05).

Subjects rated appropriateness of the interface, on a scale of
1 to 5, (1: not really, 5: very much). Mean ratings of the
balancing task were 2.33 (SD=1.24) with Spreadsheet and
4.14 (SD=0.83) with DataBoard, and of the scheduling task,
2.28 (SD=0.82) with Spreadsheet and 3.83 (SD=0.98) with
DataBoard, with a main effect of Interface (KW, p < 0.01).

Post Questionnaire

When asked about what helped or hindered their task
performance on Spreadsheet, 10 out of 18 participants
mentioned sort, particularly for categorizing information
visually for easy verification. Despite availability of
sorting, five participants mentioned that they had trouble
mapping their tasks onto the tabular format, particularly for
balancing tasks when all categories where in a single
column (as opposed to three for example for balancing task,
one for each developer). This was also an issue for
scheduling tasks, as one participant said, not being able to
map dependencies on the tabular format, “It was hard to
keep in mind dependencies.” One participant mentioned
that even with sort he needed a way to more clearly
separate rows. Four participants mentioned difficulty of
keeping track of their state, and found it difficult to use
expressions even as simple as sum and count, like one
participant who put it as “Calculations might have helped, if
I had known the right spreadsheet magic....”

Regarding DataBoard, 6 participants felt that lack of sorting
hindered their task performance, while 3 mentioned ability
to do calculations would have been nice for DataBoard. On
the other hand, participants overwhelmingly (11) liked the
visual nature of DataBoard in problem solving and
suggested it helped them in their tasks by allowing them
organize data in 2D, particularly to represent problem
states, as one participant resembled it to a “parking lot”
where you could solve parts of the problem in different
places. Visual layout was also considered helpful for
“visually balancing by just looking” thus reducing the need
for calculation. Most participants felt that spatial interaction
helped them “more effectively tune their solution”. Three
participants mentioned problems with spatial interaction
particularly that the list interaction mechanisms could have
been better designed and undo was difficult.

Participants were divided evenly regarding which task was
more difficult, 8 suggested balancing task, 8 scheduling
tasks, and 2 suggested about the same. On the other hand
participants overwhelmingly said that Spreadsheet (12) was
more difficult than DataBoard (3), while remaining said
they were about equal.

Six participants used paper as an aid to help them solve
problems such as calculating sums of difficulties, drawing
dependency graphs, and remembering problem states at
specific points, but 4 said they didn't but they should have
used paper for similar reasons.

In concluding remarks, participants felt that DataBoard was
really useful in their problem solving tasks, particularly for
“manually solving simple problems.” One participant found
that “DataBoard was a lot more useful than I thought it
would be,” and another said “[It] opened my eyes to a new
kind of dealing with data.” Scalability was brought up as a
specific concern with DataBoard, as one participant said: “I
wonder if DataBoard would scale as much as the
Spreadsheet when we get to many characteristics.” The

Figure 3. Task Performance Times and Memory Recall Error by

Task and Interface. (Error Bars shown for +/- 2 SE)

scalability of DataBoard remains to be tested, as our focus
currently was simple everyday problems with a small
number of objects (less than 50). Many subjects found
tabular layout of spreadsheets to be limiting despite the
availability of the column/row move feature in Google
Spreadsheets – in fact that is why we chose Google
Spreadsheet over other spreadsheet applications. This
would make the interactions comparable to DataBoard both
in terms of treating objects as a unit as well as in terms of
interaction style. Even though participants were shown how
to move rows and columns during training, many of the
participants except one did not move rows and columns in
the Spreadsheet condition. We believe that the visual
affordances of the spreadsheet were so strong that a
column/row move action was contrary to what users
expected in a strict grid representation. One participant said
“even though I knew I could move rows around, it never
occurred to me to do so during the tasks.”

VIDEO ANALYSIS

To develop a more in-depth understanding of the findings
from the controlled experiment we analyzed video captured
during the experiments. One of the researchers coded all the
video from the experiment sessions, where events were
identified and time-stamped. No additional coding by
another researcher was conducted as coding was not subject
to interpretation but rather focused on Next, itime-stamping
events, such as typing in a number on a column in the
spreadsheet or moving an object under a column in the
DataBoard case.

Coding

Aside from obvious events such as, START, TALK, END,
we coded action events as <OBJECT> <COLUMN>
{<POSITION>}, when a participant moved (or entered text
to that effect in Spreadsheet) an object to a column,
optionally at a specific position, and SORT, when
participant sorted (in the Spreadsheet), and NOTE to code
external action such as using paper.

Additionally, we divided each session into three sequential
phases: Prepare, Execute, and Verify & Recover. Prepare

phase covered all actions such as sorting and moving
objects in free space and lasted until the first actual
assignment was made, followed by Execute which lasted
until all objects were assigned, at which point we
considered an initial complete solution was reached, and
lastly a Verify and Recover phase in which participants
tried to improve upon their initial solution. Note that this
doesn’t mean that participants did not perform, for example,
verification in the Execute phase; it was merely our
definition of gross phases of problem solving.

Observations

We identified three different strategies in our observations:
1) Incremental (with Trial & Error), 2) Heuristic (with
Tweaking), and 3) Decompose and Recompose. Incremental
strategies sought to solve the problem by reducing the scale
of the problem linearly at each step. Heuristic approaches
employed a general scheme to get to an initial solution very
quickly and focused on fixing the initial solution thereafter.
The Decompose and Recompose strategy divided the
problem into smaller, more manageable parts and then
merged them to achieve a solution. Below we describe our
observations for both balancing and scheduling tasks and
describe specific instances of each of these strategies in the
experiment. The participants reported below were selected
based on the differences in task performance times, in one
way or another, and based on the commonality of the
strategy and actions.

Balancing Task

We report our observations of S2 and S15, who performed
faster with DataBoard (DB), and S4, who performed
slightly faster with Spreadsheet (SS).

Decompose and Recompose + Incremental: S2. In the
DB case, S2 spent considerable time planning and
organizing defects into groups based on priority and
difficulty (Figure 4). Then, she started distributing defects
one row at a time with defects having the same difficulty
and priority. She compensated differences in difficulty on
subsequent rows when possible. Finally, she counted
defects based on priority and difficulty across developers.

Figure 4. S2 spent considerable

time decomposing the problem

space by organizing defects into

groups based on priority and

difficulty levels.

Next, in the SS case, S2 started by sorting first by class-
level and then by difficulty, which gave a good overview of
the distribution of classes. She then started distributing
classes of same level and difficulty but had trouble
balancing once the obvious ones (equal level and difficulty)
were assigned. To help in her task, she created tables to
keep track of the distribution by level and difficulty, but
spent a lot of time doing this as she had trouble maintaining
the table. She gave up on the table and tried sort by class
level, which gave a reasonable view of the solution state.
After a few more assignments she was done.

Analysis. In both cases S2 employed a combination of
Decompose and Recompose and Incremental strategies. In
the DB case S2 decomposed the problem by arranging
defects into groups based on priority level and difficulty
and thereafter executed fairly optimally in an incremental
fashion. S2 was able to proceed carefully on each row, and
arrived to an initial solution which was the correct solution.
Tackling the problem one row at a time helped S2 execute
with awareness of the problem state on each row and verify
easily at the end. In the SS case, she decomposed the
problem easily by leveraging sort and began an incremental
strategy. Once the obvious assignments were made, S2
started to have a hard time keeping tally of assignments.
Creating summary table didn’t help, and she lost quite a bit
time. In the end another sort came to rescue.

Incremental: S15. In the DB case, S15 did not do any
preparation but proceeded in a very orderly, incremental
manner by picking and choosing the right mix of classes
based on class level and difficulty from the original list, and
making assignments for one row at a time. On each row he
either completely balanced classes or, he tried to
compensate for it on the next row (Figure 5).

Next, in the SS case, S15 started again in a similar fashion
assigning defects to A, B, and C in order (Figure 6). He
tried to maintain balance but when only three defects
remained he concluded that he can’t as remaining defects
had different difficulties. He cleared completely, sorted by
difficulty, and then by priority. He prepared expressions to
sum difficulty levels by priority. He calculated that he
needed total difficulty to be 12 for each developer. Thus, he
assigned 2 defects from each priority level, totaling 12 in
terms of difficulty and assigned them one at a time to
developers. He did not do any verification. Performance
time, even only counting the time after cleanup, was still a
lot longer compared to DB. (267 sec. in SS vs. 92 in DB)

Analysis. In the DB case S15 successfully completed a
purely incremental strategy and found the solution easily
with no verification necessary at the end. In the SS case he
applied the same incremental strategy but failed as defects
being dispersed in the layout made it difficult to balance.
After clearing he utilized a Decompose and Recompose
strategy by sorting and got a good sense of the distribution.
After several calculations he transformed the problem into a
computational problem and solved it as such.

Heuristic (with Tweaking): S4. In the SS case, S4 applied
a heuristic approach and started by going from highest
difficulty down, independent of priority levels, and
assigning defects to developers in sequence, A, B, and C
and got to an initial solution quickly. She tweaked her
solution by first sorting on priority and counting difficulties
for each person and tried to balance it by swapping defects.
She did so in an optimal way.

Next, in the DB case, the participant proceeded in a similar
fashion by distributing classes of the same difficulty to
professors in order of A, B, and C, if possible at the same
class level. Towards the end the participant performed a
quick check of the distribution of class levels by professor
and completed by swapping the differences. The participant
did a very quick check at the end.

Analysis. In both DB and SS cases participant followed the
same strategy with similar performance levels. When the
strategy was well-thought to its finest detail in advance
performances turned out to be similar.

Scheduling Task

We report our observations of participants S1, who
performed faster with DataBoard, and S2, who performed
faster with Spreadsheet.

Figure 5. S15 trying to maintain balance

on subsequent rows by compensating

difficulties (indicated by *s) on the second

row 2, 2, 1 with difficulty levels on third

row 1, 1, 2.

Figure 6. S15 trying to assign defects to developers in order

(A, B, and C) by priority but also trying to balance of the

difficulties on each set of assignments (A, B, C).

Figure 7. a) Upon seeing a priority violation across developers,

i.e. Layout on Ashley vs. Import on Becca, S1 fixed it easily by

moving DB to Becca, pushing Import down automatically.

Figure 8. When classes were sorted by class level, S1 failed to

see several violations of class level constraint.

Figure 9. Participant S2 spent considerable time organizing

classes in free form based on dependency and class level.

Incremental (with Trial and Error): S1. In the DB case,
the participant started first by assigning the high priority
defects to developers by taking dependencies into account.
As she was assigning the remaining defects, S1 recognized
a priority violation across developers and fixed it easily by
moving a high priority defect to the other list shifting down
defects accordingly (Figure 7). She then assigned the
remaining defects to developers in order of priority, and
quickly verified the solution.

Next, in the SS case, S1 started by sorting classes on class
level and set the schedule order first (without assigning
class type yet). Immediately after a few assignments she
began taking prerequisites into account. Once all schedule
assignments were completed, she assigned class types.
Despite spending considerable time on verification (30 sec.)
she didn’t reach to an optimal solution, and failed on
several violations of class level (Figure 8).

Analysis. The participant started in both cases by following
a similar strategy, i.e. starting with high priority defects or
classes and then considering dependency as needed. In both
cases the participant didn’t follow an optimal path to the
solution yet in the DB case he was able to quickly fix it as
DataBoard allowed for quick changes to ordering,
facilitating flexible problem solving. In the SS case it took
longer to come to an initial solution. While S1 reached to an
optimal solution in the DB case, in the SS case she failed to
see several violations of class level constraint because of
the way classes were organized, as they were sorted by
class level not by schedule order.

Decompose and Recompose: S2. In the SS case, the
participant quickly developed a strategy based on specific
decomposition of the defects by dependencies and priorities
and executed his plan by focusing solely on ordering of
classes in the schedule. The participant then assigned them
to developers randomly. He did a very quick check at the
end and completed the solution optimally.

Next, in the DB case, participant spent considerable time
planning his strategy by organizing classes in the free space
based on the prerequisites and class levels (Figure 9). His
solution was just to move this onto the solution space

(under class types) where he would combine several of
these dependency graphs into two lists of class types. He
did so in an optimal number of steps.

Analysis. In the DB case planning in free space turned out
to be useful in terms of thinking about and planning for the
problem but didn’t carry performance benefits in the
solution of the problem, particularly as it wasn’t easy to
move objects from the planning space to the solution space.
In the SS case having a very concrete and specific plan in
advanced enabled easy execution.

DISCUSSION – FREEFORM SPATIAL INTERACTION

To discuss the tradeoffs between freeform and structured
spatial interaction, as they relate to the phases and strategies
of problem solving we identified, we use Kirsh’s categories
of the use of space to organize our comparison [12]. Kirsh
proposed three main categories of use of space: spatial
arrangements that simplify choice, spatial arrangements that
simplify perception, and spatial dynamics that simplify
internal computation [12].

Simplifying Choice

Arrangements that simplify choice use spatial affordances
to encode actions, which help by reducing the search space
or suggesting available actions. This plays an important role
in the planning phase of problem solving tasks, and as such
it is crucial for strategies with heavy planning phases, such
as Decompose and Recompose. In freeform spatial
interfaces, we argue that the ability to map problem space
features more flexibly without the constraints of the

structure of tabular interface made it more applicable to a
wider range of problems. In our post-interview, participants
mentioned this issue particularly for scheduling task on the
tabular layout, preferring the freeform nature of DataBoard.
Even for the balancing task, the tabular layout’s strong
affordances limited participants; and they didn’t consider
arranging defects in flexible groups, as the DataBoard
participants using the Decompose and Recompose
strategies did in arranging defects by difficulty and priority.
In the spreadsheet, the sorting operation was utilized
heavily to compensate, but still the sorted arrangement was
linear and didn’t lend itself to the clear visual separations of
objects that participants wanted. Also, for incremental
strategies we saw that at each step of the process
participants chose suitable objects from the unassigned set
to make informed choices going onward.

Simplifying Perception

Spatial arrangements can also help simplify perception by
making problem properties noticeable and thus making it
easy to monitor the problem state. This was especially
crucial for incremental approaches, where participants
needed to track solution state at each step along the way.
Many participants had problems in tracking state in the
Spreadsheet interface, because objects were dispersed
throughout the list, making it difficult to notice violations of
problem constraints. This happened in situations as simple
as ranking of red-orange-yellow priorities, as well as in
situations with more complex dependency constraints. For
heuristic approaches, which heavily rely on visual
recognition of the solution state, it is critical to notice
violations in the complete solution.

Simplifying Internal Computation

Problem solving is a complex cognitive task, involving
representation, computation, and verification. Spatial
interfaces allow users to represent the semantics of the
problem spatially and visually. For example, consider the
balancing task. On DataBoard assignments are represented
by a list of objects under each assignee. When the user
moves objects on the layout, from one list to another or
onto free space, the user is intending to change
assignments. On the spreadsheet, assignments are
represented symbolically by names in the assignee column.

Easing internal (mental) computation involves creating
visual cues to make certain properties explicit, thus
bypassing the need for computing. This was particularly
important for incremental approaches and to some degree in
the recompose phase. Arranging defects with the same
difficulty on the same row, or even compensating
differences in the next row, was much easier given the
horizontal arrangement of defects on DataBoard, essentially
representing the summation of defect difficulties.

Spreadsheets have powerful operations, such as sorting and
computation. Sorting groups assignments so that the
distribution is clear and reduces internal computation.

Spreadsheets also support defining computational formulas.
For example, formulas to count assignments and sum up
difficulties can help the user see the conformance of the
problem state to the problem constraints. Yet, we saw little
use of such formulas in our experiments, even though
participants were fairly experienced spreadsheet users. The
issue here wasn’t that participants didn’t know the sum and
count functions; it was specifying what cells to apply these
functions to. This was especially difficult, because all
assignments were on a single column and it was difficult to
specify cell ranges by assignee.

The DataBoard system used in the study did not provide
such computational operations. However, it would be easy
to add computations on spatial structures (e.g., formulas to
count or add property values of items in lists) [5]. But note
that spatial arrangements (e.g. horizontal alignment)
reduced the need for such explicit computations.

There is an interesting tradeoff. While manually arranging
items takes time, it cognitively involves the user; and thus
the problem state is thoroughly understood and becomes
memorable. While sorting in the spreadsheet is fast, it is
perceptually jarring (as positions of objects change
abruptly) and doesn’t require cognitive involvement; and as
such state may be less well understood and remembered.

Temporary Planning Spaces

Strategies had differing emphases in the planning,
execution, and verification and recovery phases and thus
made differing uses of space. In the DataBoard, a number
of participants created separate planning spaces, where they
represented problem space features, such as distribution of
defects by priority and difficulty or dependency graph-like
arrangements of defects. One of the participants called this
a “parking lot,” where one could temporarily park their
partial solutions. In the Spreadsheet, participants had
overlapping uses of space during planning and execution. A
few participants created separate spaces where they did
verification. They created tables to manually keep tally of
assignments, but had problems updating the counts. In
DataBoard, on the other hand, some participants had
difficulty moving spatial arrangements off the planning
spaces and merging them into the solution spaces. This was
in part due to the fact that DataBoard didn’t support list
merge, as well as some specific list implementation issues.

CONCLUSION

Freeform satial interfaces help users to (1) flexibly map the
problem onto a freeform arrangement and plan their
strategies accordingly; (2) execute their strategies
incrementally and easily check their actions at each step,
leveraging reduced internal computation; and (3) verify and
tweak their complete solutions easily, due to clear
perceptual arrangements of objects in the space. These
benefits, however, don’t come for free, as they require
involvement and effort from the users and thus may
degrade overall performance.

There is a spectrum of spatial interfaces from completely
freeform to completely structured. In this paper, we
compared two specific instances of spatial interfaces near
the ends of the spectrum. Our main goal was to further our
understanding of spatial interfaces in support of problem
solving tasks. We believe that there is benefit if we can
provide a general way to transform structured domains onto
freeform interfaces, augmented by some structuring and
computational capabilities, to support more effective
problem solving of common problems in these domains.

ACKNOWLEDGMENTS

We thank Steve Whittaker, Paul Maglio, and Chris
Campbell for their input into the design and analysis of the
study and Jeff Heer for suggesting important related work.

REFERENCES

1. Antle, A.N., Droumeva, M. and Ha, D. Thinking with
hands: An embodied approach to the analysis of
children’s interaction with computational objects. In

Proc. CHI ’09, ACM, 2009, 3961-3966.

2. Arias, E., Eden, H., Fischer, G., Gorman, A., and
Scharff, E. 2000. Transcending the individual human
mind-creating shared understanding through
collaborative design. ACM Trans. Comput.-Hum.

Interact. 7, 1 (March 2000), 84-113.

3. Agarawala, A. and Balakrishnan, R. 2006. Keepin' it
real: pushing the desktop metaphor with physics, piles

and the pen. In Proc. CHI '06. ACM, 1283-1292.

4. Bailey, B.P. and J.A. Konstan. Are Informal Tools
Better? Comparing DEMAIS, Pencil and Paper, and
Authorware for Early Multimedia Design. In Proc. CHI

‘03, ACM, 2003, 313-320.

5. Burnett, M., Atwood, J., Djang, R., Gottfried, H.,
Reichwein, J., Yang., S. Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet
Paradigm, Journal of Functional Programming 11(2),

March 2001, 155-206.

6. Ekstrom, R. B., French, J.W., Harman, H.H., and
Derman D. (1976). Manual for Kit of Factor-Referenced

Cognitive Tests. Princeton, NJ: Educational Testing

Service.

7. Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D.,
and Bailey, B.P. 2007. TEAM STORM: Demonstrating
an interaction model for working with multiple ideas
during creative group work. In Proc. Creativity &

Cognition (C&C '07). ACM, 2007, 193-202.

8. Hinckley, K., Zhao, S., Sarin, R., Baudisch, P., Cutrell,
E., Shilman, M, Tan, D. InkSeine: In Situ search for
active note taking, In Proc. CHI ’07, ACM, 2007, 251-

260.

9. Jacob, R. J., Ishii, H., Pangaro, G., and Patten, J. 2002.
A tangible interface for organizing information using a
grid. In Proc. CHI ‘02, ACM, 2002, 339-346.

10. Jones, W. P. and Dumais, S. T. 1986. The spatial
metaphor for user interfaces: experimental tests of
reference by location versus name. ACM Trans. Inf.

Syst. 4, 1 (Jan. 1986), 42-63.

11. Kang, H., Bederson, B.,B., Suh, B. Capture, Annotate,
Browse, Find, Share: Novel Interfaces for Personal
Photo Management. Int. J. Hum. Comput. Interaction

23(3): 315-337 (2007).

12. Kirsh, D. The intelligent use of space, Artificial

Intelligence, v.73 n.1-2, p.31-68, Feb. 1995

13. Kirsh, D. and Maglio, P. On Distinguishing Epistemic
from Pragmatic Action. Cognitive Science 18, (1994),

513-549.

14. Lansdale, M. W. Remembering about documents:
memory for appearance, format, and location.
Ergonomics, 34, 8 (1991), 1161-1178.

15. Malone, T.W. How do People Organize their Desks?
Implications for the Design of Office Information
Systems. ACM Transactions on Office Information

Systems 1, 1 (January 1983), 99-112.

16. Mandler, J. M., Seefmiller, D., Day, J. On the coding of
spatial information. Memory & Cognition 5, 1 (1997),

10-16.

17. Millen, D. R., Schriefer, A., Lehder, D. Z., and Dray, S.
M. 1997. Mind maps and causal models: using graphical
representations of field research data. In CHI '97

Extended Abstracts, ACM, 265-266.

18. Moran, T. P., van Melle, W., and Chiu, P. 1998. Spatial
interpretation of domain objects integrated into a
freeform electronic whiteboard. In Proc. UIST '98.

ACM, 1998, 175-184.

19. Naveh-Benjamin, M. Coding of Spatial Location
Information: An Automatic Process? Journal of

Experimental Psychology: Learning, Memory, and

Cognition 13, 4 (1987), 595-605.

20. Norman, D., & Hutchins, E. Computation via direct
manipulation. Final Report to Office of Naval Research,
Contract No. NOOO14-85-C-0133. University of

California, San Diego, 1988.

21. Robertson, G., Czerwinski, M., Larson, K., Robbins, D.
C., Thiel, D., van Dantzich, M. Data Mountain: Using
Spatial Memory for Document Management. In Proc.

UIST ’98, ACM. 1998, 153-162.

22. Warr, A. and O'Neill, E. Tool Support for Creativity
using Externalisations. In Proc. Creativity and

Cognition (C & C ’07). ACM, 2007, 127-136.

23. Zhang, J. The Nature of External Representations in
Problem Solving. Cognitive Science 21, 2 (1997), 179-

217.

24. Zhang, J. and Norman, D. A. Representations in
Distributed Cognitive Tasks. Cognitive Science 18, 1
(1994), 87-122.

