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ABSTRACT
Digital educational resources could enable the use of ran-
domized experiments to answer pedagogical questions that
instructors care about, taking academic research out of the
laboratory and into the classroom. We take an instructor-
centered approach to designing tools for experimentation that
lower the barriers for instructors to conduct experiments. We
explore this approach through DynamicProblem, a proof-of-
concept system for experimentation on components of digital
problems, which provides interfaces for authoring of experi-
ments on explanations, hints, feedback messages, and learning
tips. To rapidly turn data from experiments into practical im-
provements, the system uses an interpretable machine learning
algorithm to analyze students’ ratings of which conditions are
helpful, and present conditions to future students in proportion
to the evidence they are higher rated. We evaluated the sys-
tem by collaboratively deploying experiments in the courses
of three mathematics instructors. They reported benefits in
reflecting on their pedagogy, and having a new method for
improving online problems for future students.
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INTRODUCTION
Online problems are widely used to assess students’ knowl-
edge and to provide feedback about whether and why their
answers are correct, in settings from on-campus learning man-
agement systems to Massive Open Online Courses (MOOCs).
Instructors can improve student learning by incorporating
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . 15.00

DOI: https://doi.org/10.1145/3173574.3173781

explanations, hints, and pedagogical tips into online prob-
lems [10], just as occurs in face-to-face tutoring. However,
when instructors give face-to-face explanations, they naturally
vary the explanations that they give, enabling them to com-
pare which explanations students find helpful and which leave
them confused based on students’ body language and verbal
responses. This adaptation is rare with online problems: in-
structors typically create one feedback message for a problem,
and that message is provided to every student who interacts
with the problem. This eliminates the opportunity to iteratively
improve the message over time, and the opportunity for the
instructor to reflect on what types of messages are most helpful
for students.

One way to address this challenge is through experimentation
in online problems: randomized experiments can be used to
compare alternative versions of explanations, and data can be
collected about how helpful students find each explanation.
This affordance of online educational resources is increasingly
being used by researchers in psychology and education to
move randomized experiments from the laboratory into real-
world courses [34].

While these experiments are deployed in some instructors’
classes, these experiments often have limited impact on teach-
ers’ pedagogy and may not lead to persistent changes in
courses that directly impact students. Even if the instructor
and researcher are collaborating on an experiment by virtue
of the experiment being conducted in the instructor’s course,
the researcher’s needs and perspective are likely to dominate.
Researchers have more experience conducting experiments
and are the ones doing the work of programming randomiza-
tion, implementing conditions, and managing data logging
and analysis. Instructors might only act as gatekeepers for
approving a deployment of experiments, rather than as stake-
holders in the design and recipients of the benefits. This could
also be a lost opportunity for academic research, as instruc-
tors could improve experiments by contributing their teaching
experience, and help scientists rethink the opportunities for
experiments to more directly inform instructional design and
produce concrete curricula changes that have practical benefits
for students.

https://doi.org/10.1145/3173574.3173781


This paper therefore takes an instructor-centered approach to
designing tools for experimentation. Based on observations
from deploying field experiments with instructors, our goal is
to reduce the programming knowledge and time required for
instructors to conduct experiments, and to accelerate the use
of data from experiments to enhance curricula materials and
help future students.

We instantiate guidelines for instructor-centered experimen-
tation in DynamicProblem, a proof-of-concept system for in-
structors to work with a researcher to experiment on instruc-
tional components of interactive math problems. Experiments
compare different elaboration messages, alternative versions
of explanations, hints, feedback messages, and learning tips.
The system, DynamicProblem, directly integrates the design
of experiments into instructors’ authoring of instructional con-
tent. To accelerate the use of data from experiments to enhance
curricula materials, the system uses an interpretable machine
learning algorithm to automatically analyze students’ subjec-
tive ratings and present the most effective conditions to future
students.

The first author worked with three university instructors in
using DynamicProblem to compare alternative elaboration
messages in problems in their courses. Instructors reported
that the system successfully reduced the programming experi-
ence and time needed to conduct experiments, that designing
experiments helped instructors reflect on pedagogy, and that
instructors believed dynamic experimentation would enable
practical improvement of curricula materials by providing the
best problem components to future students.

In summary, the contributions of this paper are:
• Guidelines for an instructor-centered approach to designing

tools for experimentation: Reducing the programming and
time requirements for instructors to conduct experiments,
and shortening the pipeline for data to be used to produce
practical benefits for students.

• An instantiation of this instructor-centered approach in a
proof-of-concept system: DynamicProblem is an end-user
tool for conducting experiments on components of a prob-
lem – hints, explanations, and learning tips – which uses
machine learning to automatically analyze data and provide
the highest rated components to future students.

• Presentation of case studies from field deployments of Dy-
namicProblem in the university courses of three instructors.

RELATED WORK
We consider related work on technology that enables experi-
mentation in digital educational resources, efforts to involve
instructors in research, and the specific opportunities for ex-
perimentation on components of online math problems.

Technology for Experimentation
One barrier to using experimental studies to investigate possi-
ble enhancements to digital educational resources is the lack
of tools for end-user experimentation by instructors and learn-
ing researchers. Ideally, instructors could be involved in the
“democratization of data science” [14], analogous to how [22]

help Reddit community members conduct experiments with
moderation and community policies.

As “A/B testing” for user interfaces and marketing becomes
increasingly widespread in the technology industry (e.g., see
[17]), tools like Optimizely and Google Content Experiments
have emerged to enable end-user experimentation on websites.
However, most widely used Learning Management Systems
(Blackboard, Canvas, Moodle) and MOOC platforms (Cours-
era, NovoEd) do not provide instructor-facing tools for exper-
imentation. The security and data privacy considerations of
educational platforms pose obstacles to adding custom code
and using industry tools for generic website experimentation.
Plugins often require the use of specific standards like Learn-
ing Tools Interoperability [23].

Some platforms (such as edX and ASSISTments [13]) are
introducing tools that make it easier for instructors and re-
searchers to run experiments without writing code, although
these efforts are currently in the minority. Moreover, these
tools require instructors to do the work of linking linkdo not au-
tomatically link students’ the condition students are typically
require extensive work in linking data about students’ assign-
ment to conditions with data about student outcomes [25].Crit-
ically, tools designed for experimentation do not encourage ex-
periments to be used directly for course improvement, such as
providing data rapidly while a course is running, or providing
automatic methods for transitioning from random assignment
to providing the single best condition.

Involving Instructors in Research
There have been a number of efforts to involve instructors
in the process of academic research, recognizing that simply
disseminating the findings of research studies may often fail to
change instructors’ teaching practices [4]. These have largely
focused on research using qualitative [24], design [3], and
data mining/analytics methods [21], rather than student-level
randomized experiments, which are traditionally difficult to
conduct in classes. Action research in education (e.g., [24])
and HCI [12] proposes that instructors solve pedagogical prob-
lems by taking a research-oriented approach, in considering
relevant literature, formulating questions and hypotheses, and
collecting (largely) qualitative data about what works in their
own classrooms.

Design-based research describes a family of approaches by
learning scientists [3, 7, 2] that emphasize development of
theories by iterative development of interventions in realistic
contexts. This focus leads to natural involvement of teachers
as partners, such as in successfully co-designing digital assess-
ments (e.g., [26, 36]). Both Design-Based Implementation
Research [26] and Networked Improvement Communities [8]
target teacher-researcher partnerships that focus on having
research problems surfaced by teachers, as well as closing the
loop by putting insights from research into practice. Similarly,
the Open Learning Initiative [21] connected teams of instruc-
tors and cross-disciplinary researchers around collaborative
design of online courses and analysis of assessment data.



Instructional Support in Interactive Math Problems
This paper explores instructor-centered experimentation in on-
line math problems, as math instructors frequently use these
problems for assessment and improving students’ learning.
Problems that incorporate high quality instructional scaffold-
ing can promote learning far more than lectures or videos [16].
Elaboration messages have been specifically targeted in inter-
active math problems, with enhancement of problems through
appropriate design of hints [15], explanations [35], and learn-
ing tips [6]. Despite the extensive research literature showing
that high quality support can benefit learning, there are many
open questions about how to provide the best instructional
support and feedback in interactive problems (see [31] for a re-
view), and a great deal of work to be done in testing the extent
to which these broad principles apply to specific real-world
courses and contexts.

CHALLENGES FOR INSTRUCTOR EXPERIMENTATION
We consider the challenges instructors face in three stages of
conducting an experiment: (1) Authoring & Deployment: Cre-
ating and randomly assigning conditions– alternative versions
of educational resources; (2) Obtaining Data: Linking data
about student responses to the experimental conditions they
received; (3) Using Data: Improving course content for future
students based on data from an experiment.

This section elaborates on each stage of experimentation, pre-
senting: (1) An illustrative example, drawn from a collabora-
tive experiment between the first author and an instructor teach-
ing an online course; (2) Challenges instructors face, identified
from field observations and interviews with instructors, as de-
scribed below; (3) Guidelines for designing instructor-centered
tools for experimentation.

Field Observations and Interviews. We identified challenges
instructors face in experimentation by drawing on observa-
tions from two sources. First, field observations from working
with instructors to deploy experiments, which provided insight
into the challenges that arose from real-world deployments
with students. Second, interviews with instructors who had
not yet run experiments, to understand their expectations and
concerns about conducting experiments in their course. The
field observations arise from the first author’s experience while
working with over 20 instructors and instructional designers to
conduct 15 experiments in their courses between 2012-2016.
These instructors taught both university courses and MOOCs
in mathematics/STEM; the technology included platforms for
on-campus Learning Management Systems (Moodle, Can-
vas), MOOCs (edX, NovoEd), and mathematics problems (the
Khan Academy, ASSISTments); the experiments varied in-
teractive problems, videos, webpage content, and emails; the
topics of investigation ranged over cognitive, educational, and
social psychology questions about motivation and problem-
solving. The interviews with people who had not yet run
experiments were 30-60 minute one-on-one discussions with
ten instructors and instructional designers, who were teaching
university-level courses that could use mathematics/STEM
problems. The interviews explored instructors’ beliefs about
how experiments could be relevant to improving their courses,

and what barriers and benefits they anticipated in working
with researchers to conduct experiments.

1. Authoring & Deployment
Instructors need to author multiple conditions (versions of an
educational resource) and randomly assign these to students.

Example. The instructor and researcher (the first author) inves-
tigated how students’ reflection while watching videos could
be enhanced, by adding different open-ended question prompts
below a video. Most course platforms do not provide a means
for random assignment, so the researcher embedded Javascript
code in a course webpage to present different reflective ques-
tions (note that some platforms do not custom scripting). To
ensure a student’s assignment to a question could be linked to
their later behavior in the course, students were assigned to
conditions (questions) based on the value of the last digit of
a hashed numerical identifier from the platform (making the
assumption that distribution of these digits is random). The
instructor could not use the course authoring tools to edit or
preview the questions/conditions, as these were stored directly
in JavaScript. Back and forth iterations on authoring/editing
therefore had to take place over email and in Google Docs, and
the instructor could not directly preview student experience in
different conditions.

Challenges. The field observations and interviews suggested
that instructors are not aware of how to author and deploy
experiments in their course platforms without assistance from
programmers. Most instructors lack programming skills (or
end-user tools) for authoring and implementing randomized
assignment of alternative versions of course content.

Instructors were therefore not very involved in the details
of designing experiments in their courses. Instructors had
high level verbal discussions of experiments, but researchers
or programmers implemented the actual conditions in code
divorced from course authoring tools. The delays in back-
and-forth communication reduced instructor engagementt and
agency in authoring conditions/content for experiments.

Design Guidelines. Minimize the programming knowledge
and time needed for instructors to author alternative versions
of course content, and directly deploy randomized content to
their students.

2. Obtaining Data
Instructors need to obtain data about how student out-
comes/behaviors are impacted by the condition to which stu-
dents were randomly assigned.

Example. To analyze the results, the researcher had to obtain
log data from the platform– about students’ viewing time of
subsequent videos, and accuracy on future problems. These
dependent variables for each student than had to be linked to
the question condition that each student was assigned to. This
required connecting anonymous identifiers associated with
log data to the different identifiers that were available to the
Javascript code for randomization, by obtaining a mapping
from the platform. Figuring out this process was sufficiently
complicated that data was not obtained until a month after the
experiment was deployed and data collected.



Challenges. Instructors lack knowledge about how to obtain
student data and link it to the course content to which students
were randomly assigned. Even technology-savvy researchers
face technical barriers and long delays in obtaining data from
educational platforms and linking it to earlier randomized con-
tent. This often depends on knowing platform idiosyncrasies
for how data is logged and how random assignment achieved,
as well as knowledge of tools for munging data from different
sources.

Design Guidelines. Help instructors obtain student responses
grouped by experimental condition, with minimal time spent
figuring out how to combine different sources of data.

3. Using Data: Improving resources for future students
As instructors obtain data about the effect of experimental con-
ditions on the students who have participated so far, this data
can inform their decisions about which conditions/resources
to present to subsequent students.

Example. Because the researcher had to manually link data
about student outcomes to condition assignment, the instructor
did not receive the data in a useful format until the course
was completed. Upon obtaining data, the instructor deliber-
ated whether to continue the experiment in the next offering
of the course, or terminate the experiment by choosing one
condition/question for all future students. Although the data
was not conclusive about which condition/question was best,
the instructor decided to avoid the substantial overhead of
conducting another experiment in the next course run. The
code enabling random assignment was stripped out of the
course, and the course platform used to re-author a single
condition/question. It should be noted that the instructor was
aware they were giving all future students a condition/question
that may not have actually been the best. There was only
inconclusive evidence in the form of a small numerical trend,
but no statistically significant or even marginal result.

Although the instructor wanted to make a decision that was
better founded in the data, they were concerned that even if the
researcher could obtain data more rapidly in the next course
iteration, the instructor would have to deal with the mental
overhead of continually examining that data and determining
when they were justified in ending the experiment. Moreover,
even in the best case scenario where data from early students
identified which condition would be best for later students in
the same course, making the change to present that condition
to everyone could introduce bugs, as it required stripping out
the code and re-authoring content in the course platform.

Challenges. Instructors were often unsure of whether and
how data from experiments would help them change their in-
structional practice, and did not see how traditional scientific
experiments would immediately benefit their students. They
had the impression (or experience) that obtaining and analyz-
ing data from experiments would only be completed well after
their course was finished. It wasn’t clear to them what the ex-
act pathway was from conducting an experiment to changing
course materials for future students, and they expected that it
would involve additional time, mental overhead, programming
effort, and risk of bugs or negative student experience.

Figure 1. Typical student interaction with a math problem (selected
from case study 3). After students submit an answer to an online math
problem, one of the set of alternative elaboration messages (experimen-
tal conditions) is assigned to them, shown in the dotted box. The stu-
dent is asked to rate how helpful the message is for their learning. The
algorithm for dynamic experimentation uses this data to reweight ran-
domization and present future students with higher rated elaboration
messages, and the instructor can view this data as well. In this case,
the student was assigned to the message that contained a learning tip
about reviewing relevant materials. The corresponding instructor inter-
face for authoring these messages is shown in Figure 2, which shows that
this message was the second condition.

Design Guidelines. Reduce the delays and costs to instructors
in using data from experiments to make practical improve-
ments to educational resources, to benefit future students.

DYNAMICPROBLEM SYSTEM
We present a proof-of-concept system, called DynamicProb-
lem, that helps instructors conduct experiments on instruc-
tional components of problems that we call elaboration mes-
sages, such as explanations for correct answers [28], hints [27],
and learning tips [6]. The system exemplifies our broader
instructor-centered approach, lowering the overhead associ-
ated with conducting experiments and enabling real-time anal-
ysis of data so that future students are assigned to the condi-
tions that were effective for past students.

DynamicProblem can be plugged into any learning man-
agement system or MOOC platform that supports the ubiq-
uitous Learning Tools Interoperability (LTI) standard [23].
This includes major platforms like Canvas, Blackboard, Moo-
dle, edX, Coursera. Instructions for how to add a hosted
version of DynamicProblem into a course are available at
www.josephjaywilliams.com/dynamicproblem, and the code base

www.josephjaywilliams.com/dynamicproblem


Figure 2. Interface for instructors and researchers to author elabora-
tion messages (experimental conditions) in problems. For illustration,
this shows what the instructor for Case Study 3 saw, in their experiment
comparing their existing correctness feedback to correctness feedback
plus a learning tip. Figure 1 shows the interface of a student who partic-
ipated in this experiment and received the second condition. The link to
View Data and Policy Dashboard navigates to the table in Figure 3.

is available on Github by following the URL http://tiny.cc/
githubdynamicproblem.

Students navigating to a DynamicProblem page simply see
a problem, choose an answer, and then receive an elabora-
tion message. Students are prompted to rate how helpful the
elaboration message is, on a scale from 0 (completely unhelp-
ful) to 10 (perfectly helpful). Figure 1 illustrates a student’s
interaction with a problem from Case Study 3.

When instructors and researchers go to the same DynamicProb-
lem page, they access a composite interface that provides
access to pages for authoring and previewing problems, as
well as for designing, deploying and examining data from
experiments on elaboration messages. In addition to a page
for authoring the text of the problem’s question and answer
choices (standard in Learning Management Systems), Figure 2
shows the interface for instructors and researchers to add, re-
view, and edit alternative versions of the elaboration messages
that are displayed after a student chooses an answer (all fig-
ures are screen shots from the experiment in Case Study 3).
Instructors can then preview what a randomly chosen student
will see (as illustrated in Figure 1), allowing them to reflect on
potential experimental conditions in the context of students’
experience. Figure 3 shows the dashboard presenting data
about student ratings for each elaboration message, and the
current probability of assigning students to these alternative
conditions based on student ratings.

Data and Policy Dashboard
The data and policy dashboard enables instructors and re-
searchers to view data in real-time, rather than waiting weeks
or months for data munging and organization. Figure 3 shows

Figure 3. The Data and Policy Dashboard shows instructors the student
ratings for each of the conditions in their experiment: Mean, Number
of Students participating, and Standard Deviation. The policy is also
shown – the probability of each condition being presented, at a given
point in time. This dashboard shows what the instructor in Case Study
3 saw after all students had participated. The table in Figure 6 summa-
rizes this dashboard information on the left, and on the right includes ad-
ditional information for Case Study 3, e.g., Standard Error of the Mean,
and the instructor’s predictions about quality of elaboration messages.

the dashboard using a screen shot from Case Study 3 after
all students had participated. Aggregating outcome variables
by condition maintains student anonymity and privacy, while
furnishing the instructor with the key data about the relative
effectiveness of the conditions. The dashboard also shows
the respective probabilities that each of the conditions will be
assigned to the next student, to avoid the randomization policy
being a “black box.”

Dynamically Randomized Assignment
To enable instructors to turn data from experiments into prac-
tical improvements to problem content, DynamicProblem pro-
vides an algorithm for dynamically re-weighting the probabil-
ity that a condition will be assigned to the next student, with
the goal of providing future students with the highest rated
elaboration messages. In brief, the probability of assigning a
condition (elaboration message) is originally uniform random
(e.g., 50/50), but becomes weighted random (e.g., 80/20) as
data is collected. The probability of assigning a condition
is proportional to how many past students have given that
condition a higher rating than the alternatives.

Probability matching algorithm for dynamic experimentation
Deciding when there is enough data to be confident of choos-
ing the best condition can be understood in terms of the explo-
ration versus exploitation tradeoff explored in the reinforce-
ment learning literature (see [32] for an overview). The algo-
rithm for dynamically weighted randomization must balance
exploiting information collected so far, such as continuing to
select an explanation because the first student who saw it rated
it highly, with exploring and collecting information about al-
ternative explanations, which might be rated more highly by
future students.

We formalize the decision about which conditions are assigned
to students as a multi-armed bandit problem, a model used for
automated online experimentation in websites [18], and more
recently, for optimizing educational resources [33, 20]. In a
multi-armed bandit problem, the system’s goal is to maximize
its total rewards. At each time point, it chooses one action from
a set of possible actions, and receives a noisy reward based
on the action chosen. In our application, rewards are student

http://tiny.cc/githubdynamicproblem
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outcomes, and the learned policy specifies what action the
system will take (which elaboration message will be provided).

A wide range of algorithms can be used for this problem.
To aid in interpretability for instructors, we made the design
choice to use a probability matching algorithm called Thomp-
son Sampling [9] which can be understood as dynamically
weighted randomization. The probability of assigning con-
dition X to a student is equal to the current probability that
condition X has the highest rating, based on the previously
observed ratings, and an assumed statistical model. Our goal
was that the system’s assignment of conditions would not be a
“black-box”, but provide instructors a convenient interpretation
of how and why conditions are assigned to students.

Our implementation used Bayesian inference over a Beta-
Binomial model for the student ratings for each condition. We
specifically used a Beta(19, 1) prior distribution, which can be
understood as the prior belief that any condition has received
one rating of a 9 and one rating of a 10. This represents opti-
mistic but uncertain initial beliefs about each condition. Al-
ternative prior beliefs could have been used without changing
the overall system design. The Binomial likelihood function
assumes the student rating of r follows a Binomial distribution
with 10 samples, r of which are positive. The choice of the
conjugate Beta-Binomial model allows efficient real-time up-
dating of the policy, as the model’s posterior distribution over
each condition remains a Beta distribution.

Beta-Binomial (or Beta-Bernouili) models are popular in
multi-armed bandit applications of Thompson Sampling, from
optimizing websites to features of educational technology [30,
33, 20]. The novel approach in this paper is embedding it
within an end-user tool for instructors, to provide an auto-
mated yet interpretable method for transitioning from data
collection in a traditional experiment to providing useful con-
ditions to future students.

REAL-WORLD CASE STUDIES OF DYNAMICPROBLEM
To understand and evaluate the instructor-centered approach
instantiated in DynamicProblem, we present case study de-
ployments into the courses of three instructors, who worked
with the first author to conduct experiments. Our sample size
was limited by the investment in full end-to-end design, de-
ployment, and analysis of experiments, but conducting these
case studies in real courses provide deeper insight into how
the system would be used for realistic applications.

Participating Instructors
We identified three faculty at Harvard University who used the
Canvas LMS to teach courses with a mathematics focus, where
online problems and elaboration messages are widely used.
These were a graduate-level methods course in a Public Policy
school (102 students), an undergraduate course on Probability
from the Statistics department (68 students), and an under-
graduate course on Calculus (36 students). The instructors
had never conducted experiments before with their students
or any other population, but were familiar with the concept of
randomized assignment as a scientific method. The instructors
were invited to try out a new system for experimenting with
elaboration messages.

Use of DynamicProblem for Experimentation
Either the researcher or instructor added the DynamicProblem
system to each instructor’s course in the Canvas LMS, using
the functionality major platforms provide for including LTI
tools. The researcher then met with each instructor to show
them the DynamicProblem system and describe how it could
be used to present different elaboration messages to students,
and collect data about student ratings of helpfulness. The re-
searcher asked the instructor for a description and examples
of their current use of online problems, and what pedagog-
ical questions about problem feedback that they might like
to answer using DynamicProblem. Both the instructor and
the researcher proposed multiple ideas for experiments test-
ing feedback, and one was selected by consensus, anywhere
from the first to third meeting. The operationalization of the
experimental question and hypotheses into specific conditions
(explanations, hints, learning tips) and implementation in Dy-
namicProblem typically raised more discussion (over email
or in person) and required 2-3 rounds of back and forth di-
rect editing of elaboration messages. After final approval, the
problem and embedded experiment was deployed to students.

Before the instructor viewed the data dashboard, the researcher
suggested the instructor make quantifiable predictions about
which conditions/feedback messages they thought would be
more helpful for students’ learning. Specifically, the instructor
answered the prompt: "Rate how helpful you think each mes-
sage will be for learning, on a scale from 0 (not at all helpful)
to 10 (extremely helpful)". The instructor also judged "Rate
how confident you are in your evaluation, on a scale from 1
(not at all confident) to 5 (perfectly confident)." Making pre-
dictions about experimental results in advance has been shown
to reduce ‘hindsight bias’ or the sense that people knew the
result all along [11]. These prompts aimed to get the instruc-
tor to reflect on their beliefs about which feedback messages
would be effective, and how uncertain they were about these
beliefs, which could better prepare them to understand how the
data informed their beliefs and pedagogical practice. These
ratings are shown in the right half of the table summarizing
the experimental data for each case study.

1. Analogical Explanations in a Public Policy Course
Design. The instructor identified a problem to test a question
they had been wondering about in previous offerings of the
course – whether to introduce an analogy to telescopes in
explaining the concept of the statistical power of a hypothesis
test. The instructor compared two explanations: The first
explained statistical power of a hypothesis test in terms of the
distribution of a sampling statistic and critical regions. The
second explanation provided an analogy comparing the power
of a hypothesis test to detect true effects in a population, to
the power of a telescope to detect objects: A smaller object
(lower impact of a program) would require a more powerful
telescope (a greater sample size to increase statistical power).

Results. The left half of Figure 4 summarizes the results of the
experiment that appeared on the data dashboard, although in-
structors viewed this data using the interface in Figure 3. The
right half of Figure 4 provides additional information that was
not displayed in the dashboard, namely: The standard error



Figure 4. Case Study 1 data: The left side of the table summarizes the information from the instructor dashboard after all students had finished, which
the instructor and researcher would view using the interface shown in Figure 3. The key information was: The probability of assigning the next student
to a condition according to the algorithm for dynamically weighted randomization, the current mean student rating, the number of students, and the
standard deviation of the student ratings. The right side of the table shows the standard error of the mean (SEM) for student ratings, the instructor’s
rating of how helpful they predicted each message would be for student learning, and the instructor’s confidence in their helpfulness rating.

Figure 5. Case Study 2 data: The left side shows the instructor dashboard after all students completed the problem. The right shows the standard error
of the mean (SEM) for student ratings, and the instructor’s rating (with confidence judgment) of how helpful they anticipated the messages would be.

of the mean for each condition, and the instructor’s predic-
tions (and confidence) about how effective each explanation
would be. The data suggested a small trend for the analogical
explanation to be rated higher, which surprised the instructor,
who had predicted the opposite. Given the small effect, the
instructor wondered if the trend would hold up with more
data. The data did reduce the instructor’s initial concerns that
students would be frustrated or confused by the introduction
of the analogical explanation, which was less technical and
had not been covered in class.

2. Answers, Hints, Solutions in a Probability Course
Design. The instructor raised a tension that had arisen in
previous teaching, about how much information to provide to
students. The experiment therefore investigated how students
would react to receiving just answers or hints, compared to full
solutions. After students entered an answer, the instructor’s
experiment assigned them to receive either: (1) the correct
answer (e.g. “Answer: 9 is more likely”); (2) a hint (e.g.
“Hint: Dice are not indistinguishable particles!...”), or (3) A
full worked-out solution to the problem (e.g. “Solution: Label
the dice as Die 1 and Die 2 and label...”).

Results. Figure 5 shows the results of the experiment as they
appeared on the data dashboard, along with the instructor’s
predictions about which conditions would be best. The data
suggested that students rated the full solution as most help-

ful, followed by the hint and then the answer alone. The
instructor found the data to be a useful confirmation of their
predictions, which they had wanted to verify. The instructor
also commended the rapid roll-out of the higher rated solution:
“Because you want to explore which option is better, but if one
of them is clearly better, you want most students to be seeing
that one.”

3: Learning Tips in a Calculus Course
Design. The instructor was concerned that students solving
problems only rarely made connections with or reviewed the
concepts from previous lectures, which the instructor believed
was valuable for learning. This motivated an experiment that
compared: (1) the existing content-specific feedback message,
like “Correct! This is the lowest point on the graph of f.” to (2)
the feedback message plus a general learning tip, like “If you
would like to review this sort of question further, you can look
back at your notes about how we found where the function g
was greatest and least. Or you can look at the relevant video.”
The instructor wanted to examine both students’ subjective rat-
ings and a measure of learning. The experiment was therefore
embedded in the first of a series of related problems on the
graphs of derivatives.

Results. Figure 6 shows the information from the data and
policy dashboard, as well as accuracy on the subsequent 4
problems. The instructor had predicted that students would



Figure 6. Case Study 3 data: The left side shows the instructor dashboard after all students took the problem. The right side shows two variables
unique to case study 3: “Next Problem Accuracy” is the mean accuracy in solving 4 related problems that students attempted, after doing the problem
in which the experiment on messages was conducted; and the standard error of the mean for Next Problem Accuracy.

find the extra information far more helpful, and was surprised
by students’ ratings that the elaboration messages were equally
helpful. This led the instructor to express the desire to run
the experiment in future offerings to collect a larger sample of
data, as well as try out other ways of framing the learning tip.

INSTRUCTORS’ PERSPECTIVES ON EXPERIMENTS
This section presents observations from the case studies on
the instructors’ perspectives on conducting the experiments.
These are based on field observations collected while the first
author worked with the instructor in using DynamicProblem.
In addition, each instructor participated in a follow-up inter-
view after the conclusion of the research, to share their ex-
periences. All these meetings were recorded and transcribed.
These transcripts were reviewed by the first author to iden-
tify themes that pertained to the challenges and design goals
introduced earlier in the paper, concerning how instructors’
experience in conducting experiments related to their instruc-
tional goals.

Instructors were empowered to conduct experiments
DynamicProblem was designed to understand how instructors
might use experiments to improve their pedagogy. Discussion
with the instructors indicated that they had not previously used
experiments as a tool in their own classes. But this effort led
them to see experiments as “a valuable tool...[for] the teacher
to understand how their students learn. Not just in broad terms
but specifically in their course.” (I2: Instructor 2).

All three case studies resulted in instructors successfully co-
designing experiments with a researcher, and the experiments
were successfully deployed within their classes, demonstrat-
ing that DynamicProblem did facilitate experimentation. To
design and deploy an experiment required instructors to spend
approximately 2-6 hours in total, and the researcher to spend
3-5 hours on each experiment. This is a small amount of time
compared to experiments run on math problems by the first
author in the past. These could take as much as 20-40 hours be-
cause of back-and-forth in designing experimental conditions,
figuring out how to embed a randomized experiment in online
platform and then writing code, and determining where data
was collected and how it could be linked to randomization.

Experimentation led to reflection on instructional design
One hope was that DynamicProblem would make experiments
better meet instructors’ goals, such as coming up with new
ideas and reflecting on how they designed elaboration mes-
sages. I3 noted that previously they were just focused on
“typing up one version” to get the problem complete, and the
scaffolding that they provided tended to be “very specific to
the question at hand.” However, designing experiments led I3
to more actively focus on the implications of different instruc-
tional choices, and be more creative about general strategies
for supporting students: “adding a link back to a video or a
link back to a chalkboard is something I had not previously
considered.” This suggests that thinking through the design
of experiments may be helpful for instructors to improve their
teaching: I3 said “So even if we don’t get any significant data,
that will have been a benefit in my mind.”.

Data from experiments was seen as informing pedagogy
In addition to helping instructors think about their pedagogy
more broadly, the data collected in DynamicProblems and
visualized on the data dashboard was helpful for instructors
to better understand their students’ learning. For example,
I2 noted that they usually found the data analytics in their
learning management system “not very useful” and too fo-
cused on things like the timing of when students completed
a problem. Because DynamicProblem asked students to rate
the helpfulness of explanations, the instructors could gain a
better understanding of students’ experiences in the problem
from the dashboard, as this information was aggregated on the
screen. I3 mentioned appreciating seeing this broken down by
experimental condition, which provided “data that I normally
don’t get” about the helpfulness of scaffolding. The avail-
ability of data from experiments helped instructors to reflect
on alternative design decisions: The data from Case Study
1 was inconsistent with I1’s prior beliefs, as they predicted
mathematical explanations would be rated by students as more
helpful than analogical explanations.

Dynamic Experimentation as a practical tool for improv-
ing a course
Instructors saw the practical value of dynamic experiments
for improving curricular materials and helping students, not



just for the sake of research. I3 said “I think it is best for the
students, it adds value that students are more likely to get the
explanation that’s going to help them” and I2 echoed that it

“improved the experience of many of the students by giving them
answers that are more helpful... the students updating earlier
are helping the ones who did it later.... That’s pretty neat.”

Instructors were more willing to conduct experiments when
they knew the technology could rapidly deploy better con-
ditions into the actual problem, and I1 planned to continue
running the experiment “from one semester to another, that is
going to increasingly refine which versions are the best and
feed those to the students.” In contrast, many educational field
experiments lead to reports or papers about results, but there
are many delays in using data from the experiment to change
the course content or experience of the students.

Instructors were more motivated and informed about con-
ducting future experiments
The simplicity of the initial experiments allowed instructors to
deploy experiments after hours instead of weeks. This could
raise a concern that such tools might simply lower the bar-
riers to having instructors run low quality experiments. For
example, learning researchers might be concerned that the
outcome variables in these experiments are students’ ratings,
not measures of learning. On the other hand, grappling with
the challenges researchers face in designing experiments could
make instructors more aware of the need for such research. We
found that in the course of conducting their first experiment,
instructors began reflecting on better ways to measure the
effectiveness of elaboration messages. For example, in identi-
fying follow-up ‘post-test” problems that could be included
to measures how receiving an elaboration message influenced
learning. I3 did in fact include related problems as a measure
of learning, as shown in Figure 6.

I2 wanted to build on their comparison of hints to solutions
and compare “multiple full solutions,”, intending to compare

“one approach that’s pretty long and tedious but very easy to
understand and another one that’s much more elegant, but
harder to understand why it works.” I3 saw particular value
for experiments “when we add new content to the course that I
haven’t had as much experience teaching.” The benefits of Dy-
namicProblem are therefore not limited to a single experiment,
but helping instructors enhance their instruction by coming up
with new ideas and repeatedly experimenting.

DISCUSSION, LIMITATIONS & FUTURE WORK
Instructors in our three case studies reported that designing
experiments about practical questions of interest helped them
reflect on their pedagogy, and that the system’s immediate
access to data and use of machine learning for dynamic ex-
perimentation provided a convenient pathway to enhancing
problems for future students.

We hope this is only the first of many papers to investigate
instructor-centered experimentation. Digital experimentation
could become a valuable tool for instructors to collect data
about how instructional design impacts students, but there are
many questions for future research to answer about the rela-
tionship between randomized experiments and instructional

practice. Instructor-centered experimentation may also facili-
tate closer collaboration between instructors and researchers,
ensuring that interventions can be adapted to real classrooms
and that experiments address practical problems and are atten-
tive to ethical issues.

To help provide a foundation for this future work, we con-
sider specific limitations of how we evaluated this approach,
and then turn to current limitations of an instructor centered
approach more broadly, and what questions these limitations
raise for future research.

This paper involved instructors in end-to-end field deploy-
ments, in order to deeply explore a small number of case
studies. But this could limit the generalizability of the insights.
Future work needs to explore a greater number and variety
of instructors. Beyond mathematics problems, instructors in
other disciplines provide online problems and activities that
could benefit from testing elaboration messages. The approach
we present also should be tested for a broader range of experi-
ment types, such as experimenting with components of online
courses other than individual problems.

Since the first author worked with instructors in the case stud-
ies, we were concerned the system might be difficult to use
by instructional designers with less support. We conducted
additional informal tests of usability. We provided Dynam-
icProblem to a class of 20 master’s students in education as a
course exercise in testing out features of a problem, along with
written instructions about the system functionality. Working
in six groups of 2-3 students, all were able to build and test
out on each other a problem containing an experiment with
feedback, in 1-1.5 hours. We also showed the tool to four
teaching assistants and asked them to use DynamicProblem to
replicate the experiment from Case Study 2, with no assistance
or documentation. All were able to complete the task. They
remarked that it was “convenient to author the explanations in
the same interface as the problems” and they would not need
assistance in implementing as “one person could do it.”

One limitation of DynamicProblem is that it collects students’
subjective ratings of quiz content rather than measuring learn-
ing. Educational researchers often carefully design assess-
ments of knowledge and learning, as people’s self-reports
about how well they understand a concept can be unreliable
[29]. It should be noted that we did not ask students how
well they understand a general topic, but asked them to rate
how helpful an elaboration message was for learning from a
specific problem, which has been shown to be predictive of
subsequent learning from explanations [33]. Our aim with
ratings of elaboration messages was to rapidly provide instruc-
tors with an analog of information they perceive and use when
teaching in person – students’ expression of confusion or un-
derstanding. Future systems optimize for behavioral measures
of knowledge, such as accuracy on future problems.

To understand student perspectives on being in experiments,
we administered an optional survey in Case Study 3. The
survey explained that students were randomly assigned to al-
ternative versions of the feedback messages and ratings were
collected in order to figure out which were most helpful. Stu-



dents were asked to quantify their attitude towards being ran-
domly assigned, and the mean response was 2.52 on a scale
from -5 (strongly disapprove) to +5 (strongly approve). Stu-
dents commented that “I’ve been involved with usability and
A/B testing on web site development, so it doesn’t shock me”,

“I like the idea”, and that it “Fine tunes the learning for future
students”. Students did not express serious objections to the
experiment, and in fact appreciated that it would improve the
course and help fellow students.

More broadly, there are limitations to the instructor-centered
approach we propose. There are of course many instructional
design questions that are not best answered through random-
ized experiments, but through alternative approaches, like the
qualitative analysis and design methods used in action research
[24]. Class sizes are a limitation on the value of experimen-
tal data, making large classes, or those with multiple parallel
offerings, most appropriate.

Future work should also explore how and whether instructor-
centered approaches can simultaneously meet researchers’
needs. Systems like DynamicProblem may be helpful to re-
searchers by making it easier to embed experiments in courses,
facilitating effective collaboration with instructors. However,
future work should investigate researchers’ openness and abil-
ity to analyze dynamically re-weighted experiments (as is
being done in other contexts, e.g., [30, 5]). Additional struc-
ture may be needed for instructors and researchers to identify
experiments that are of mutual scientific and practical inter-
est. One possibility is that researchers and instructors can
meet their differing goals by running different experiments, or
including different conditions in the same experiment. This
raises the question of when and how instructors will be able
to run experiments that are useful and rigorous enough to
improve their instruction and help students.

While a successful experiment for a researcher is one that con-
tributes to scientific knowledge, a successful experiment for
an instructor may be one that enhances their typical instruc-
tional practice. None of the instructors in our case studies had
previously conducted laboratory or field experiments, but they
reported that designing the experiments helped them reflect
on pedagogical decisions and generate new ideas, even before
any data was available.

A related limitation is whether instructors need extensive sta-
tistical knowledge in order to interpret data from experiments
and use it to make decisions. The dynamic experimentation al-
gorithm does mean that instructors don’t have to make moment
by moment decisions about whether to stop an experiment,
as past work has provided near-optimal bounds on how the
regret (i.e., the difference in outcomes between the chosen
condition and the best condition) of the algorithm’s choices
grows over time [1]. But future work can explore whether pro-
viding statistical training or changing the kind and format of
data presentation results in better use of experimental results
by instructors, or if there are benefits to allowing instructors
greater control over the algorithm.

One additional limitation of our approach is the lack of at-
tention to discovering which conditions work for different

subgroups of students, such as whether quantitative or ana-
logical explanations were more helpful for students with low
versus high prior knowledge. In fairness, most experiments
first focus on the difficult task of discovering “what works”,
as a precusor to “what works for which type of student?”.
Such an extension to instructor-centered experimentation may
require significant future investigation of instructors’ needs
and ability to collect data about individual differences and an-
alyze data for complex statistical interactions. One promising
technological direction could be contextual bandit algorithms
for dynamic assignment that can take into account contextual
information about learners themselves (e.g., [19]). Such work
would build on our current implementation of algorithms that
turn randomized experiments into engines for dynamic im-
provement, by turning tools for experimentation into engines
for dynamic personalization.

CONCLUSION
To help realize the promise of experimentation to help in-
structors enhance digital educational resources, this paper
presented design guidelines for more instructor-centered tools
for experimentation. Our goal was to reduce the programming
knowledge and time that instructors need to conduct experi-
ments, and to help instructors more rapidly use data to enhance
the learning experience of the next student. We instantiated
a solution in the proof-of-concept system DynamicProblem,
which lowered the barriers for instructors to conduct experi-
ments on elaboration messages in online problems, such as
explanations, hints, and learning tips. The system used a multi-
armed bandit algorithm to analyze and use data about students’
ratings, in order to present the higher rated conditions to fu-
ture students, automatically enhancing the problems. Case
study deployments with three instructors suggested the system
helped them reflect on how to improve pedagogy, and provided
a data-driven pathway for enhancing their online problems.

Just as decades of work have established how learning re-
searchers can effectively use experiments, a great deal of
future work is needed to understand how instructors can ef-
fectively use experiments. A hosted version of the Dynam-
icProblem system can be used in courses by following the
instructions at www.josephjaywilliams.com/dynamicproblem, and
the code base is available on Github by following the URL
http://tiny.cc/githubdynamicproblem. We hope that this paper
provides a foundation for future investigations of instructor-
centered experimentation.

ACKNOWLEDGEMENTS
This work was supported in part by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korean government (MSIT) (No.20160005640022007,
Development of Intelligent Interaction Technology Based on
Context Awareness and Human Intention Understanding), as
well as by the UM Poverty Solutions program and the IBM
Sapphire Project at the University of Michigan.

REFERENCES
1. Shipa Agrawal and Navin Goyal. 2013. Further Optimal

Regret Bounds for Thompson Sampling. In Proceedings
of the Sixteenth International Conference on Artificial

www.josephjaywilliams.com/dynamicproblem
http://tiny.cc/githubdynamicproblem


Intelligence and Statistics. Journal of Machine Learning
Research, 99–107.

2. T. Anderson and J. Shattuck. 2012. Design-Based
Research: A Decade of Progress in Education Research?
41, 1 (2012), 16–25. DOI:
http://dx.doi.org/10.3102/0013189X11428813

3. Sasha Barab and Kurt Squire. 2004. Design-based
research: Putting a stake in the ground. The journal of the
learning sciences 13, 1 (2004), 1–14.

4. Lecia Barker, Christopher Lynnly Hovey, and Jane
Gruning. 2015. What Influences CS Faculty to Adopt
Teaching Practices?. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education
(SIGCSE ’15). ACM, New York, NY, USA, 604–609.
DOI:http://dx.doi.org/10.1145/2676723.2677282

5. Scott M Berry, Bradley P Carlin, J Jack Lee, and Peter
Muller. 2010. Bayesian adaptive methods for clinical
trials. CRC press.

6. Kirsten Berthold, Matthias Nückles, and Alexander
Renkl. 2007. Do learning protocols support learning
strategies and outcomes? The role of cognitive and
metacognitive prompts. Learning and Instruction 17, 5
(2007), 564–577.

7. Ann L Brown. 1992. Design experiments: Theoretical
and methodological challenges in creating complex
interventions in classroom settings. The journal of the
learning sciences 2, 2 (1992), 141–178.

8. Anthony S Bryk, Louis M Gomez, and Alicia Grunow.
2011. Getting ideas into action: Building networked
improvement communities in education. In Frontiers in
sociology of education. Springer, 127–162.

9. Olivier Chapelle and Lihong Li. 2011. An empirical
evaluation of thompson sampling. In Advances in neural
information processing systems. 2249–2257.

10. Mingyu Feng, Neil Heffernan, and Kenneth Koedinger.
2009. Addressing the assessment challenge with an
online system that tutors as it assesses. User Modeling
and User-Adapted Interaction 19, 3 (2009), 243–266.

11. Scott A Hawkins and Reid Hastie. 1990. Hindsight:
Biased judgments of past events after the outcomes are
known. Psychological Bulletin 107, 3 (1990), 311.

12. Gillian R. hayes. 2011. The Relationship of Action
Research to Human-computer Interaction. ACM Trans.
Comput.-Hum. Interact. 18, 3, Article 15 (Aug. 2011), 20
pages. DOI:http://dx.doi.org/10.1145/1993060.1993065

13. Neil T Heffernan and Cristina Lindquist Heffernan. 2014.
The ASSISTments Ecosystem: Building a platform that
brings scientists and teachers together for minimally
invasive research on human learning and teaching.
International Journal of Artificial Intelligence in
Education 24, 4 (2014), 470–497.

14. Benjamin Mako Hill, Dharma Dailey, Richard T Guy,
Ben Lewis, Mika Matsuzaki, and Jonathan T Morgan.

2017. Democratizing Data Science: The Community
Data Science Workshops and Classes. In Big Data
Factories. Springer, 115–135.

15. Samad Kardan and Cristina Conati. 2015. Providing
Adaptive Support in an Interactive Simulation for
Learning: An Experimental Evaluation. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 3671–3680. DOI:
http://dx.doi.org/10.1145/2702123.2702424

16. Kenneth R Koedinger, Jihee Kim, Julianna Zhuxin Jia,
Elizabeth A McLaughlin, and Norman L Bier. 2015.
Learning is not a spectator sport: Doing is better than
watching for learning from a MOOC. In Proceedings of
the Second (2015) ACM Conference on Learning@ Scale.
ACM, 111–120.

17. Ron Kohavi, Roger Longbotham, Dan Sommerfield, and
Randal M Henne. 2009. Controlled experiments on the
web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

18. John Langford and Tong Zhang. 2008. The epoch-greedy
algorithm for multi-armed bandits with side information.
In Advances in neural information processing systems.
817–824.

19. Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. 2010. A contextual-bandit approach to
personalized news article recommendation. In
Proceedings of the 19th international conference on
World wide web. ACM, 661–670.

20. J Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal
Patel, Sharan Shodhan, Kishan Patel, Ken Koedinger, and
Emma Brunskill. 2016. Interface Design Optimization as
a Multi-Armed Bandit Problem. In Proceedings of the
2016 CHI Conference on Human Factors in Computing
Systems. ACM, 4142–4153.

21. Marsha Lovett, Oded Meyer, and Candace Thille. 2008.
JIME-The open learning initiative: Measuring the
effectiveness of the OLI statistics course in accelerating
student learning. Journal of Interactive Media in
Education 2008, 1 (2008).

22. J Nathan Matias. 2016. Going Dark: Social Factors in
Collective Action Against Platform Operators in the
Reddit Blackout. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 1138–1151.

23. G Mcfall and L Neumann. 2010. IMS learning tools
interoperability basic LTI implementation guide v1. 0
Final. Internet: http://www. imsglobal. org/lti/2010 [May
2013] (2010).

24. James E McLean. 1995. Improving Education through
Action Research: A Guide for Administrators and
Teachers. The Practicing Administrator’s Leadership
Series. Roadmaps to Success. Corwin Press.

http://dx.doi.org/10.3102/0013189X11428813
http://dx.doi.org/10.1145/2676723.2677282
http://dx.doi.org/10.1145/1993060.1993065
http://dx.doi.org/10.1145/2702123.2702424


25. Korinn S Ostrow, Doug Selent, Yan Wang, Eric G
Van Inwegen, Neil T Heffernan, and Joseph Jay Williams.
2016. The assessment of learning infrastructure (ALI):
the theory, practice, and scalability of automated
assessment. In Proceedings of the Sixth International
Conference on Learning Analytics & Knowledge. ACM,
279–288.

26. William R. Penuel, Anna-Ruth Allen, Cynthia E. Coburn,
and Caitlin Farrell. 2015. Conceptualizing
Research-Practice Partnerships as Joint Work at
Boundaries. Journal of Education for Students Placed at
Risk (JESPAR) 20, 1-2 (2015), 182–197. DOI:
http://dx.doi.org/10.1080/10824669.2014.988334

27. Leena Razzaq and Neil Heffernan. 2006. Scaffolding vs.
hints in the Assistment System. In Intelligent Tutoring
Systems. Springer Berlin/Heidelberg, 635–644.

28. Alexander Renkl. 1997. Learning from worked-out
examples: A study on individual differences. Cognitive
science 21, 1 (1997), 1–29.

29. Leonid Rozenblit and Frank Keil. 2002. The
misunderstood limits of folk science: An illusion of
explanatory depth. Cognitive Science 26, 5 (2002),
521–562.

30. Steven L Scott. 2010. A modern Bayesian look at the
multi-armed bandit. Applied Stochastic Models in
Business and Industry 26, 6 (2010), 639–658.

31. Valerie J Shute. 2008. Focus on formative feedback.
Review of educational research 78, 1 (2008), 153–189.

32. Richard S Sutton and Andrew G Barto. 1998.
Reinforcement learning: An introduction. Vol. 1. MIT
press Cambridge.

33. Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel
Maldonado, Krzysztof Z Gajos, Walter S Lasecki, and
Neil Heffernan. 2016. AXIS: Generating Explanations at
Scale with Learnersourcing and Machine Learning. In
Proceedings of the Third (2016) ACM Conference on
Learning at Scale. ACM, 379–388.

34. Joseph Jay Williams, René F Kizilcec, Daniel M Russell,
and Scott R Klemmer. 2014. Learning innovation at scale.
In CHI’14 Extended Abstracts on Human Factors in
Computing Systems. ACM, 131–134.

35. Joerg Wittwer and Alexander Renkl. 2008. Why
instructional explanations often do not work: A
framework for understanding the effectiveness of
instructional explanations. Educational Psychologist 43,
1 (2008), 49–64.

36. Hsiu-Ping Yueh, Tzy-Ling Chen, Weijane Lin, and
Horn-Jiunn Sheen. 2014. Developing digital courseware
for a virtual nano-biotechnology laboratory: A
design-based research approach. Journal of Educational
Technology & Society 17, 2 (2014).

http://dx.doi.org/10.1080/10824669.2014.988334

	Introduction
	Related work
	Technology for Experimentation
	Involving Instructors in Research
	Instructional Support in Interactive Math Problems

	Challenges for instructor experimentation
	1. Authoring & Deployment 
	2. Obtaining Data
	3. Using Data: Improving resources for future students

	DynamicProblem System
	Data and Policy Dashboard
	Dynamically Randomized Assignment
	Probability matching algorithm for dynamic experimentation


	Real-World Case Studies of DynamicProblem
	Participating Instructors
	Use of DynamicProblem for Experimentation
	1. Analogical Explanations in a Public Policy Course
	2. Answers, Hints, Solutions in a Probability Course
	3: Learning Tips in a Calculus Course

	Instructors' Perspectives on Experiments
	Instructors were empowered to conduct experiments
	Experimentation led to reflection on instructional design
	Data from experiments was seen as informing pedagogy
	Dynamic Experimentation as a practical tool for improving a course
	Instructors were more motivated and informed about conducting future experiments

	Discussion, Limitations & Future Work
	Conclusion
	Acknowledgements
	References 

