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Text components of digital lessons and problems are often static: they are written once and too often not 
improved over time. This is true for both large text components like webpages and documents as well as 
the small components that form the building blocks of courses: explanations, hints, examples, discussion 
questions/answers, emails, study tips, motivational messages. This represents a missed opportunity, since 
it should be technologically straightforward to enhance learning by improving text, as instructors get new 
ideas and data is collected about what helps learning. We describe how instructors can use recent work 
(Williams, Kim, Rafferty, Maldonado, Gajos, Lasecki, & Heffernan, 2016a) to make text components 
into adaptive resources that semi-automatically improve over time, by combining crowdsourcing methods 
from human computer interaction (HCI) with algorithms from statistical machine learning that use data 
for optimization.  

INTRODUCTION 
Many online education resources are arguably static and one size fits all. They provide significant 
content, but like a textbook, provide the same explanations and material to all users. Once the resource 
has been created, it generally remains constant, with text and pictures rarely changing, regardless of how 
helpful they are for learning. There is little technology support for instructors to do rapid content iteration, 
or to collect data that they can use to decide which versions are better than others.  
 
An Intelligent Tutoring System (ITS) provides one alternative to this static instruction. ITSs deliver 
different versions of a learning experience to each student, based on their knowledge, attitudes, or 
behavior.  However, this may require instructors to generate alternative versions of the content. Most 
instructors don’t have the resources to make many different versions of lessons, such as alternative 
explanations and examples, and they may not be sure which explanations and examples will be most 
effective. 
 
How can instructors turn static text into adaptive components that can be perpetually enhanced? This 
chapter discusses how the goals of instructors and of researchers in the learning sciences can be advanced 
by integrating crowdsourcing and design ideas from human computer interaction (HCI) with machine 
learning algorithms that provide automatic optimization. The approach is illustrated by describing a 
system that instructors can use as a plugin to improve text components of instruction. It is called the 
Adaptive eXplanation Improvement System (AXIS) and was first reported in Williams, Kim, Rafferty, 
Maldonado, Gajos, Lasecki, & Heffernan (2016a). 
 
AXIS lets an instructor designate existing an static explanation to be turned into an adaptive, data-driven 
component that tests out different explanations and improves over time. Each component asks learners to 
explain why an answer to a problem is correct, which promotes reflection and understanding (Williams & 



Lombrozo, 2010), as is well-established in education as the self-explanation effect (Chi et al, 1989; 1994; 
Lombrozo, 2006). At the same time, learners explanations can be collected and then presented to help 
future students learn, given the importance of high quality explanations (Renkl, 1997). The instructor then 
indicates how explanations should be compared (e.g., based on learner ratings or on learner performance 
on a related problem), and AXIS applies a machine learning algorithm automatically analyze and use the 
data being collected to choose better explanations for future students. For example, in a computer science 
class, one might want to determine what explanation of a sorting algorithm is most clear to learners, as 
measured by students’ rating of the helpfulness of the explanation. If learners are provided with the 
opportunity to rate the explanation that was provided to them, their responses can be used to select better 
explanations for future learners. 
 
The original paper (Williams et al, 2016a) provides the technical details of the system design and 
algorithm. The current chapter is intended to provide a higher level overview of how the approach is 
relevant to instructors and researchers outside of HCI and machine learning. In that vein, we begin with a 
brief overview of relevant work. 

RELATED WORK 

Human Computation & Crowdsourcing for Education 

Creating usable, understandable explanations for answers to problems is a task that current artificial 
intelligence (AI) approaches still struggle to achieve, although great success has been made in building 
intelligent conversational tutors for specific tasks (e.g., Graesser, Chipman, Haynes, Olney, 2005). 
Crowdsourcing for human computation has been used to create useful systems in a variety of settings 
where AI still struggles (Doan, Ramakrishnan, & Halevy, 2011), like assistance editing word documents 
(Bernstein et al., 2010). These systems achieve scalability by reducing the skill level needed by 
individuals in a crowd to complete components of a task (e.g., see Scribe, Lasecki et al., 2012). 
 
Paulin and Haythornthwaite (2016) explore different facets of online education that can be crowdsourced. 
Yuan et al. (2016) specifically explore how rubric-guided crowd workers can produce helpful feedback 
on students’ design submissions. Weir, Kim, Gajos, & Miller (2015) introduce the idea of 
‘learnersourcing’ as a way to elicit useful improvements to an educational system from ‘crowds’ of 
learners, as a byproduct of their natural interaction with educational content (see also Kim, 2015; Kim et 
al, 2014). 
 
Glassman & Miller (2016) describe a learnersourcing system that, through personalized prompts, collects 
hints for students from peers who have already acquired the expertise necessary to generate them. These 
hints helped students debug computer processors and design better transistor-based logic gates. The 
current chapter is similar in collecting learnersourced explanations and hints. Additionally, our work 
collects feedback from students, using machine learning to analyze this data and infer how popular 
explanations are, then actively change the system to present explanations more frequently as evidence 
accrues as to their effectiveness.  



Tradeoffs between Experimentation & Optimization 

Randomized experimental comparisons are a powerful method for quantitatively determining what is 
effective – from instructors and researchers identifying which of multiple explanations is satisfying, to 
doctors identifying which drug promotes health to product designers evaluating new interfaces. 
Experiments have brought great value to web analytics under the label of A/B testing (Kohavi, 
Longbotham, Sommerfield, & Henne, 2009).  
 
Typically experimental comparisons assign people to conditions with equal probability (e.g., 50% to 
explanation A and 50% to explanation B) since this provides maximal statistical power to detect 
differences, relative to random assignment that uses non-equal probabilities (e.g., 30% to explanation A 
and 70% to explanation B).  Both approaches are random in the sense that it is not known which condition 
a participant will be assigned to (that is sampled), but not random in the more limited sense that the 
probability of being assigned to any condition is equal. Both approaches are statistically valid in allowing 
causal conclusions. The approach of random assignment with different probabilities provides the 
opportunity to reduce (but not eliminate) statistical power to discover differences, in order to maximize 
actual benefit to the participants in the experiment, since a greater proportion of them could receive the 
more beneficial condition.  
 
This raises many instructional, statistical, and ethical questions, which instructors and researchers will 
themselves have to answer. In this chapter we describe how this connects to a classic problem in 
reinforcement learning: Balancing exploitation of what has already been observed with exploration to 
learn more about different options. 

Reinforcement Learning: Multi-Armed Bandits 

Reinforcement learning (RL) is a type of machine learning that allows a system to learn through 
interaction with an environment (see Sutton & Barto, 1998 for an overview). RL algorithms try out 
different actions, and seek to determine what actions tend to be most effective. What is “effective” is 
defined by the algorithm designer as a particular parameter to optimize; in the case above, an effective 
website is one that generates mailing list sign ups.  
 
In cases like testing different versions of websites or deciding what ads to show users, a class of 
algorithms known as multi-armed bandit algorithms are commonly used. The term multi-armed bandit 
comes from analogy to slot machines (‘bandits’ that ‘steal money’ when you pay them) that have multiple 
arms to pull, with unknown and uncertain payoffs. A player may be trying to determine what arm to pull 
(what action to take) to get as large of a payoff as possible, which requires balancing exploration of arms 
against exploitation of arms that seem to be good.  
 
While there are many different bandit algorithms (e.g., Auer, Cesa-Bianchi, & Fischer, 2002; Chapelle & 
Li, 2011), all of them seek to optimize the total effectiveness of the selected options, and do so even when 
effectiveness is stochastic. In the case of educational applications, we define the payoff based on some 
measure we are trying to optimize, such as learning or motivation, and the “arms” (actions) are different 
versions of educational content. Multi-armed bandit algorithms provide a scalable, model free way of 



optimizing our choices so that we will end up being as effective as possible for as many students as 
possible (Clement et al, 2014; Liu, Mandel, Brunskill, & Popovic, 2014).  
 
Multi-armed bandit algorithms seek to maximize the total cumulative effectiveness of all actions over a 
period of time. For instance, if after one hour, 2% of users of version A and 5% of users of version B have 
signed up for the website, this type of algorithm will tend to assign more users to version B, since it has 
observed evidence that this version is more effective. However, it will still allocate some users to version 
A because it is not yet certain which is better: it may just be by chance that more people have signed up 
with version B, especially if only a small number of users have viewed the site. As the number of users 
increases, the algorithm’s confidence in which version will be more effective increases, and it will tend to 
assign almost all users to the most effective option.  

MAKING STATIC TEXT COMPONENTS ADAPTIVE 
We illustrate our approach in a system for creating adaptive explanations for math problems, the Adaptive 
eXplanation Improvement System (AXIS; Williams et al., 2016). In the following sections we provide 
context about the value of explanations, then describe how an instructor can set up AXIS for adding and 
adapting the explanations for how to solve math problems.  

Explanations in Math Problems 

To provide context for an instructor’s goal of making explanations in math problems adaptive, consider 
the ubiquitous structure of problem activities in platforms like Khan Academy, ASSISTments, EdX, and 
Coursera. Students attempt a problem and are given feedback about whether their answer is correct. They 
may also be able to request an explanation or elaboration that explains why an answer is correct, or how 
to solve the problem. The value of providing quality explanations is clear from the educational and 
psychological literature, although it is an active area of research as to which explanations are deemed 
satisfying, and actually help learning (Lombrozo, 2006; Renkl, 1997). 

Learnersourcing Interface for Eliciting Contributions 

Typically, a student might see no explanation after solving a problem, or if one is given, it was written by 
the instructor who wrote the problem. To elicit explanations from students that can be used for future 
learners, we add a reflection prompt, asking the student to explain why the answer was correct in their 
own words. The prompt tells the learner that generating the explanation will help them solidify their 
knowledge, as shown in Figure 1. The design of this prompt is guided by decades of research in 
psychology and education on the benefits of generating explanations for learning (Chi et al., 1994; 
Williams & Lombrozo, 2010; Williams, Lombrozo, Hsu, Huber, & Kim, 2016).  
 
The prompt of course is designed to serve a second function, which is to generate explanations that future 
students might find helpful, in the spirit of crowdsourcing in HCI. These learner-generated explanations 
can be tested on future learners using reinforcement learning algorithms that evaluate the explanations 
using performance metrics designated by instructors.  
 



 
Figure 1. A prompt for a learner to explain how to solve a math problem. 

Choosing Performance Metrics 

The instructor must decide what metric the system should be maximizing via its choice of text 
component. For example, in the Williams et al. (2016a) deployment of AXIS, we decided to maximize 
learners’ ratings of how helpful explanations were for learning.  To maximize learners’ ratings of 
helpfulness, an instructor can insert an additional question for learners who receive an explanation to 
answer: “How helpful do you think this explanation is for learning?” Students can respond on a Likert 
scale, such as: 1 (Absolutely Unhelpful) to 10 (Perfect), as shown in Figure 2. In future versions of this 
system, instructors could choose to optimize a combination of performance measures, such as learners’ 
accuracy on subsequent problems and the likelihood that they keep working.  
 

 
Figure 2. An example of an explanation of how to solve a particular math problem, with a prompt 

to rate the helpfulness of the explanation. 
 
An instructor might wish to optimize a more direct measure of learning or progress toward the instructor’s 
long-term goals. For instance, the value of each text option could be based on how many learners who 



saw that option got the next problem correct. We considered this measure but found that confounding 
factors, such as variations in knowledge across students, overwhelmed the relative differences in quality 
between explanations.  Increasing the number of learners using the system would allow the machine 
learning algorithms to better cope with these confounding factors.  

Deployment of AXIS 

We (Williams et al, 2016a) deployed the AXIS system with 75 and then 150 learners, numbers 
comparable to multiple offerings of large residential introductory courses, and sought to optimize the 
helpfulness of the explanations as rated by learners.  
 
As learners solved problems, their construction of a deep understanding was guided by prompting them to 
explain why answers were correct. These explanations were captured and then provided to other learners, 
so that after receiving the correct answer, future learners could read an explanation of why the answer was 
correct. Learners were asked to indicate how helpful an explanation was on a scale from 1 to 10. A multi-
armed bandit algorithm then automatically incorporated the rating from each new learner, and used the 
ratings to alter the probabilities of which explanation it would present to the next learner. Those that 
tended to be highly rated were presented more frequently, and AXIS automatically incorporated new 
explanations that were given by users into the pool of explanations that it delivered. Figure 3 shows 
examples of explanations from several different categories: explanations discarded by AXIS, explanations 
identified as good by “Early Stage AXIS” (after just 75 learners), explanations identified as good by 
“Later Stage AXIS” (after 150 learners), and explanations written by an instructional designer on the 
ASSISTments platform. 
 
We evaluated the explanations produced by the AXIS system after 75 learners (“Early Stage AXIS”) and 
150 learners (“Later Stage AXIS”). Relative to the original math problems that had no explanations, 
adding AXIS’s crowdsourced and intelligently selected explanations to math problems significantly 
improved learners’ subjective learning experience, as measured by their ratings of how much they learned 
(effect size of AXIS explanations impact on subjective ratings of learning, vs no explanation: d = 0.29; vs 
instructional designer: d = 0.06; vs filtered explanation: d = 0.22).  
 
In addition, these learner-generated explanations from AXIS also objectively increased learning, as 
measured by performance improvements on related problems that were presented in a pre-test (before 
studying problems) and then again in a post-test (after studying problems under different conditions, like 
receiving vs not receiving AXIS explanations). Overall increases in accuracy solving problems were 
observed for AXIS explanations, vs no explanation : d = 0.19; vs instructional designer: d = 0.09; vs 
filtered explanation d = 0.01. Breaking up accuracy into isomorphic and transfer problems: The increases 
were observed on isomorphic problems, that were identical except for changing the numbers in the 
problem (vs no explanation: d = 0.12; vs. instructional designer: d = 0.11; vs. filtered explanation: d = 
0.07), as well as on transfer problems, that were completely novel but tested generalization of the concept 
(vs no explanation: d = 0.22; vs instructional designer: d = 0.04; vs filtered explanation: d = 0.26). 
 



 
Figure 3. Examples of learner-generated explanations collected and delivered by AXIS, as 

described in Williams et al., 2016. 

Instructor Review in AXIS 

At any point, the instructor can inspect the pool of explanations in the system, see the policy for how 
often each explanation is being presented, and also see the data about how explanations have been rated 
so far by students. Figure 4 shows a screenshot from a prototype view we have built for instructors, which 
provides a rough illustration of the kind of information instructors can see, and how they could change 
components of AXIS. This can be valuable in informing instructors about their “expert blind spots” about 
which explanations students will find helpful (Nathan, Koedinger, Alibali, 2001). The policy is the 
probability that each explanation will be presented, and directly reflects the reinforcement learning 
algorithm’s “judgment” of how much evidence suggests that this explanation is the best explanation, with 
respect to the instructor’s performance metric. 
 
 



 
 

Figure 4. Illustration of a rough prototype for how instructors can view AXIS explanations, data, 
and policy. 

 
The design of the system also allows the instructors to interact with AXIS, although Williams et al 
(2016a) did not explore this. The AXIS front-end interface pulls the actual explanations from the Google 
sheet in Figure 4, computing the policy based on the data in that Google Sheet, using the probabilities 
displayed. Any modifications to that sheet directly impact the behavior of the AXIS system. This provides 
a range of promising functionality, that needs to be carefully studied.  
 
The instructor can directly add their own explanations at any point in time, by typing them into the sheet. 
AXIS will then start presenting it alongside student explanations. Instructors can also directly increase or 
decrease the probability of an explanation being presented. They could do this by directly overwriting the 
Probability of Presentation in column F, although this will override the AXIS algorithm’s computation of 
a policy. A way for the instructor to interact with rather than override the AXIS algorithm would be by 
giving the explanation their own rating of how helpful it is for learning, entered into column C. Using a 
Bayesian approach that exploits the conjugate distributions in Thompson Sampling, the instructors could 
encode their beliefs about the quality of the explanation as giving a certain number of ‘fictional’ 
observations of student ratings. In Williams et al (2016a) this was not exploited, since we assumed that 
the “prior” for every explanation was just two fictional observations, as if one student had rated it a 9 and 
another a 10.  
 



Future works needs to explore how to elicit these judgments from instructors in a way that is effectively 
incorporated into the algorithm. For example, this requires specifying how much weight should be given 
to the instructor’s rating of the explanation relative to an individual learner, which could be based on their 
confidence in their rating. Such capability can help instructors fine-tune the system when learner-
generated explanations contain misconceptions or the instructor wants to direct learners to a particular 
explanation. The general approach we use aims to empower instructors to build adaptive educational 
systems, in the spirit of end-user programming that allows people to make changes to software systems 
without writing code (Myers, 1995). 

Implementation & Use of AXIS: Available Resources & MOOClet Framework 

While the AXIS components can be implemented using any technology of choice by the instructor team, 
we have provided an online tool to make it easy for instructors to use AXIS in their own classes. To find 
out more, sign up at the URL http://tiny.cc/useaxis. The tool allows instructors to submit their own 
problems and questions to get a version of AXIS for their own demo or classroom. Their version of AXIS 
can then be provided directly to students (e.g., by emailing a URL) or embedded into a range of MOOC 
platforms and learning management systems, like EdX, Canvas, Moodle, since these and AXIS both use 
the Learning Technologies Interoperability (LTI) standard.  
 
The crowdsourcing and machine learning approach used in AXIS can be applied to adapting a wide range 
of other resources. For example, an identical approach has been applied to adapting and personalizing 
which motivational emails students receive, which study tips appear above problems, and which lesson 
pages are presented. The technology and approach that support this broad range of adaptation is described 
by the MOOClet framework (Williams & Heffernan, 2015 and; Williams, Kim, Li, Whitehill, 
Maldonado, Pechenizky, Heffernan, 2014). This framework allows any existing website, app, or online 
resource to leverage crowdsourcing and machine learning to produce rapid adaptation, providing data in 
real-time to both instructors and algorithms immediately after students interact with resources. 

SUMMARY, RECOMMENDATIONS AND FUTURE WORK 
In this chapter, we have described a systematic approach for transforming static lessons into adaptive 
resources, in the context of self-improving explanations for how to solve mathematics problems. By 
drawing on research on explanation from psychology and education, we designed prompts that enhanced 
the learning of both the students who generated the explanations and the future students who receive the 
explanations. The system was designed by combining crowdsourcing principles to elicit learner responses 
at scale, and statistical machine learning algorithms to optimize which explanations are presented, using 
target metrics defined by instructors. Instructors and researchers who wish to use this system or learn 
more can sign up at http://tiny.cc/useaxis. We briefly discuss future applications and extensions of this 
type of system. 

Beyond Math Problems: Adapting Hints and Discussion Forum Q&A 

Many features of a learning environment can be enhanced by iteratively improving written text or 
recommendations. Massive Open Online Course (MOOC) discussion forums include many examples of 
questions asked and answered by learners and course staff. Our system could recommend answers, based 



on the objective performance or subjective ratings of the students who accessed them. In addition to 
providing explanations after an answer is known, this system could adaptively provide hints for how to 
solve problems. The current system could be used to select and optimize the distribution of learner-
generated hints from a learnersourcing system like Glassman & Miller’s (2016) in real-time. 

Personalization 

The current approach is limited by a one-size-fits-all assumption: that there is a single best-explanation 
for everyone, in every context, independent of their learning goal. An alternative is to collect data about 
differences between individuals’ context and characteristics, and use this in learning personalized 
policies. When given individual’s context and characteristics, reinforcement learning algorithms can also 
learn a policy for whom to deliver which content to. Learning personalized policies does not require 
without creating new explanations or modifying existing ones. The existing approach can be 
straightforwardly extended to create adaptive components that become personalized, once there is a 
metric for differences between learners. 

Summary 

Our system allows an instructor to launch with a single explanation, hint, or answer, and leave open the 
option to improve this over time, as data becomes available about what works for learners. The system is 
easily extendable to tailor explanations to individual learners based on their specific gaps in knowledge or 
misconceptions. Frameworks like our system provide the opportunity for an entire community of 
instructors and learners to be involved in instructional design, treating the activity as an ongoing resource 
to be improved and refined.  
 
For example, if lessons, discussions, or problems in a single MOOC are used by a wide variety of classes, 
any instructor from these classes can contribute text components, as well as expert opinions on which text 
components are effective. Rather than making hard, permanent decisions about what explanation to 
present, the system probabilistically combines opinions and evidence from many different sources. Future 
ITS can benefit from incorporating these adaptive text components into existing lessons. Future work 
focused on personalizing explanations based on the characteristics of individual learners and testing the 
effectiveness of these systems in a larger set of domains will enable ITS designers to better understand 
how these systems might be of the most benefit for increasing learning. 
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