
Two Tools are Better Than One: Tool Diversity as
a Means of Improving Aggregate Crowd Performance

Jean Y. Song, Raymond Fok, Alan Lundgard, Fan Yang, Juho Kim†, Walter S. Lasecki

CROMA Lab | MISC Group
Electrical Engineering and Computer Science

University of Michigan – Ann Arbor
{jyskwon, rayfok, arlu, yangtony}@umich.edu

wlasecki@umich.edu

†KIXLAB
School of Computing

KAIST – Daejeon, Republic of Korea
juhokim@kaist.ac.kr

ABSTRACT
Crowdsourcing is a common means of collecting image seg-
mentation training data for use in a variety of computer vision
applications. However, designing accurate crowd-powered
image segmentation systems is challenging because defining
object boundaries in an image requires significant fine motor
skills and hand-eye coordination, which makes these tasks
error-prone. Typically, special segmentation tools are created
and then answers from multiple workers are aggregated to gen-
erate more accurate results. However, individual tool designs
can bias how and where people make mistakes, resulting in
shared errors that remain even after aggregation. In this paper,
we introduce a novel crowdsourcing workflow that leverages
multiple tools for the same task to increase output accuracy
by reducing systematic error biases introduced by the tools
themselves. When a task can no longer be broken down into
more-tractable subtasks (the conventional approach taken by
microtask crowdsourcing), our multi-tool approach can be
used to further improve accuracy by assigning different tools
to different workers. We present a series of studies that evalu-
ate our multi-tool approach and show that it can significantly
improve aggregate accuracy in semantic image segmentation.

CCS Concepts
•Information systems → Crowdsourcing; •Human-
centered computing → Human computer interaction
(HCI); •Computing methodologies→ Computer vision;

Author Keywords
Crowdsourcing; human computation; multi-tool aggregation;
tool diversity; semantic image segmentation; computer vision

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IUI’18, March 7–11, 2018, Tokyo, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4945-1/18/03. . . $15.00

DOI: https://doi.org/10.1145/3172944.3172948

Figure 1: This paper introduces an approach to leveraging tool
diversity that uses multiple different tools for the same task to
improve aggregate crowd performance by reducing systematic
error biases that might otherwise result from using any one
tool type alone. Our findings on an image segmentation task
demonstrate that tool diversity can provide output at least
comparable to the best constituent tool and always yields
significantly better results than the weakest constituent tool.

INTRODUCTION
The goal of image segmentation is to demarcate objects in a
visual scene from the background, allowing computer vision
(CV) systems to learn to recognize specific objects. These
CV systems can, in turn, enable autonomous cars to identify
pedestrians, surveillance drones to focus on potential threats,
and in-home robots to help people with motor or mobility
impairments live more comfortably and independently.

Perceiving the boundaries of physical objects comes naturally
for people, but it remains a challenging open problem for CV
systems due to the complexity of understanding the semantics
of visual scenes [14, 26]. Crowd-powered object segmentation

https://doi.org/10.1145/3172944.3172948

tools can bridge this gap by leveraging human understand-
ing to produce large, manually-demarcated training data sets
(e.g., [2, 12, 25]) for CV systems. However, designing crowd-
powered tools that produce high-accuracy training data and
scale efficiently (with respect to human-time cost) remains an
open problem because the task of manually marking object
boundaries requires significant hand-eye coordination and fine
motor skills, resulting in a high error rate if these tasks are
performed too quickly by workers.

Many web-based image segmentation tools (e.g., [1, 2, 5, 11,
24, 32]) have been designed to help workers reduce the effort
needed to complete a task and to increase the accuracy of their
output. However, different tool designs induce different error
biases in worker performance, which can lead to systematic
mistakes when only a single tool is used. For example, some
tools [2, 32] provide polygon drawing functionality to help
trace object boundaries, but [2] reported that workers often
skip selecting part of the object if automatic scrolling during
selection is not provided. We consider this to be a systematic
error bias because the same error pattern would be unlikely to
emerge if the tool were designed differently. In other words,
it would be unlikely for worker outputs from Click’n’Cut [5]
(which asks workers to use left/right mouse clicks to identify
foreground and background regions of an image) to make the
same mistakes as when using the polygon drawing tool. How-
ever, Click’n’Cut may exhibit its own systematic error pattern,
induced by limitations in its own design. More generally, we
consider error patterns that are found to be common among
worker outputs from a single tool to be systematic error biases,
as they are likely to be induced by the design of the tool itself.
These errors are different from, for example, human perceptual
biases that may also systematically affect outcomes.

In this paper, we propose the idea of leveraging tool diversity
as a means of overcoming these systematic error biases by
improving aggregate crowd performance. Tool diversity is
the extent to which tools designed for the same task differ
from one another in the systematic error biases that they in-
duce. Unlike standard aggregation methods in crowdsourcing,
which try to design and use the best single tool available with
many workers in order to reach high accuracy, we show that
using multiple effective tools can diversify the error patterns in
worker responses, and help systems achieve higher combined
accuracy (Figure 1). This insight is motivated by ensemble
learning methods in machine learning that use multiple learn-
ing algorithms to obtain better prediction than can be obtained
from any of the constituent algorithms alone [7].

To demonstrate our proposed workflow, we introduce a multi-
tool crowd-powered image segmentation system, FourEyes,
which leverages pairs of tools to generate better aggregate
responses. Our evaluation shows the effectiveness of tool di-
versity through comparisons of aggregate crowd performance
across different tool pairings with equally-sized groups of
workers using the same tools. We show that the output accu-
racy of heterogeneous tool pairs are better than homogeneous
sets. Moreover, we model the multi-tool aggregation problem
as an optimization problem and use expectation maximization
(EM) [6] to estimate consensus image segmentations. For

certain tool pairs, EM-based multiple tool aggregation signifi-
cantly improved output accuracy over majority voting. Finally,
we characterize our problem and summarize the properties of
crowdsourcing tasks that are amenable to our approach: those
that are objective, are tractable enough for workers to produce
nearly-correct responses, and increase in correctness as addi-
tional answers are provided, can benefit from our approach.

The key contributions of this research are:

• A novel crowdsourcing approach that combines input across
different types of tools to improve aggregate quality.

• FourEyes, a crowd-powered image segmentation system
that implements our approach, combining the output of four
different tool types to improve the collective accuracy of a
group of workers using a single segmentation tool.

• Experimental results from 51 objects across 12 indoor
scenes segmented by 288 crowd workers using four dif-
ferent tools that validate our system’s effectiveness and
suggest the benefits of our multi-tool approach.

RELATED WORK
Conventional approaches to improving crowd worker output
accuracy include microtask decomposition and consensus-
based aggregation. These approaches are usually intended to
reduce task complexity and correct for variance in individ-
ual worker responses, respectively. However, when it comes
to systematic error biases induced by a tool’s design, errors
can persist even after decomposition or aggregation, since all
workers use the same tool and the tool used in the workflow
may still induce biases in worker responses. Our tool diversity
strategy builds on prior work in crowdsourcing workflows and
answer aggregation strategies to reduce these systematic error
biases. In this section, we discuss related work in designing
crowdsourcing workflows and improving output quality by
answer aggregation.

Crowdsourcing Workflows
In crowdsourcing, breaking large tasks into smaller micro-
tasks has been a popular strategy to increase the accuracy of
crowd workers’ answers. Microtasks are small, context-free
units of work that are widely used in crowdsourcing work-
flows. Crowdsourcing platforms, such as Amazon Mechanical
Turk, post these small units of work that (typically quasi-
anonymous [22]) crowd workers can accept and complete.
Soylent [3] showed that dividing a larger task into Find-Fix-
Verify steps improves the accuracy of crowd workers’ answers
in document editing tasks. ToolScape [16] introduced a Find-
Verify-Expand workflow to enhance the process of extracting
different steps in how-to videos.

Other research has explored how to use crowd workflows to
collectively accomplish what no single worker could alone.
For instance, continuous [20, 18] or instantaneous [27] crowd-
sourcing workflows have made real-time crowdsourcing possi-
ble. These allow systems to get on-demand human responses
when immediate judgments are needed. TimeWarp [19] intro-
duced a workflow that invites a group of workers to perform a
task that otherwise cannot be accomplished by a single worker.

In their speech captioning application, working in a group
helps avoid a systematic bias of the captioning task without
adding any delay. CrowdMask [15] uses a pyramid workflow
to mask private content in images. While the system cannot
hide sensitive content from a single worker, their method seg-
ments and distributes segments of user content so that workers
can mark potentially private content without fully viewing it.
Similarly, WearMail [34] introduced a workflow that allowed
crowds to train a system on demand to accomplish an email
search task without ever revealing email contents to workers.

Our work contributes to this line of research by introducing a
novel crowdsourcing approach that aggregates multiple crowd-
powered tools to offer better performance than from any of the
constituent tools alone. To the best of our knowledge, we are
the first to study methods for using tool diversity to increase
aggregate accuracy in a crowdsourcing environment.

Improving Output Quality by Aggregating Answers
A common strategy to improve output quality in crowdsourc-
ing systems is to aggregate independent workers’ answers on
the same task into a single response, typically via a consensus
method like voting. Even simple majority voting has been
shown to produce accurate results for crowdsourcing tasks,
such as linguistic annotation tasks [33] and document edit-
ing tasks [3]. In terms of image segmentation tasks, ground
truth segmentations of objects have been generated via major-
ity pixel voting with manually-collected answers from mul-
tiple crowd workers or experts [12, 25]. More sophisticated
approaches using unsupervised learning have been used to
weight workers’ answers by using models of their abilities [4,
23, 36, 37]. Deluge [4] models workers’ sensitivity and speci-
ficity to detect noisy workers, and LazySusan [23] tracks work-
ers by assigning different weights based on the accuracy of a
worker’s answer. In [36] and [37], the authors present proba-
bilistic approaches to model not only the workers, but also the
properties of the data being labeled.

One well-known weighted aggregation method is the EM algo-
rithm [6], which predicts unknown (latent) correct answers by
estimating weights for each crowd worker’s answers. Dawid
and Skene [6] showed that the EM algorithm significantly
outperforms majority voting when a majority of workers’ re-
sponses are correct and they are conditionally independent
given the ground truth answer. The EM algorithm is suitable
for utilizing tool diversity in image segmentation tasks be-
cause: i) the majority of the pixels selected by any tool are
assumed to be correct and ii) the tools’ performances are inde-
pendent of each other. When designing tools, a tool’s abilities
are not known in advance because designers are typically un-
aware of the input images that the system will see. Because
the performance of each tool can vary with images or object
types, we can consider a tool’s ability as the latent variable to
be predicted. Therefore, we apply the EM algorithm across
different tools with the goal of maximizing the performance
of the aggregated output.

APPROACH
Prior work has used task decomposition—the process of break-
ing down larger tasks into more manageable, focused pieces

Figure 2: The top left diagram shows the hypothesis space of
the possible segmentation tools, including the best perform-
ing tool (f) and other possible hypotheses (h1 . . .h4). The
flowchart on the right shows the EM algorithm we adopted for
the optimization. Two different image segmentation tools,
h1 and h2, each with different biases, b1 and b2 (respec-
tively), pass segmented images to the system. We estimate the
weights,w1 and w2 to approximate the performance of f .

of work—to make tasks more approachable for non-expert
crowd workers. Once task decomposition has been used to
break down a larger unit of work as much as possible within
a corresponding workflow, most crowdsourcing systems then
recruit multiple workers in parallel to further improve accu-
racy by aggregating their answers. We propose using multiple
different tools across different workers to complete the same
[sub]task, instead of having all workers complete the same
task with the same interface or tool. Our proposed approach
fills in the gap where traditional task decomposition leaves off.

Our work is conceptually motivated by ensemble learning in
machine learning. Ensemble learning methods are machine
learning algorithms that construct a set of learning algorithms
and predict a new data point by taking a weighted vote of the
predictions from each learning algorithm [7, 8]. It has been
proven that ensembles can often perform better than any single
member [7]. Algorithm accuracy (i.e., better than random
guessing) and diversity are necessary and sufficient conditions
for a combination of algorithms to be more accurate than any
of its individual constituents [13]. The top left diagram in
Figure 2 shows how ensemble methods work. In the diagram,
a learning algorithm can be viewed as searching a space of
hypotheses to identify the best performing hypothesis f , which

Figure 3: Overview of the Basic Trace image segmentation
tool. (1) shows the full instruction when clicked. (2) describes
the query object which is shown to the workers in random
order. (3) shows an example of a trace line a worker provided.
(4) shows the segmentation result when clicked. (5) is the
task timer, which serves as an encouragement to workers to
consider time in their work.

Figure 4: Overview of the Drag-and-Drop image segmentation
tool. (1) shows the template images list. (2) shows an example
of the chosen template image being aligned to the query object.

can be computationally difficult to find. Ensemble learning
constructs a combination of two alternative hypotheses h1 and
h2 with proper weights (w1 and w2), and approximates the
best hypothesis f by averaging the two. Our tool diversity
approach is analogous to ensemble learning methods in that
two image segmentation tools are combined to produce a better
segmentation result. In Figure 2, the bottom left shows two
different realizations of web-based image segmentation tools,
h1(x;b1) and h2(x;b2), with different error biases, b1 and b2,
respectively. We propose using the EM method to optimize
the weights w1 and w2 that maximize the combined accuracy
of h1 and h2.

CHOOSING THE TOOLS
In this section, we introduce four web-based segmentation
tools that we designed to instantiate and test the tool diversity
concept. We considered one key question when designing the

Figure 5: Overview of the Pin-Placing image segmentation
tool. (1) shows template images list. (2) and (3) show exam-
ples of chosen points by a worker. (4) lets workers reset the
points to start over.

Figure 6: Overview of the Floodfill image segmentation tool.
(1) shows that a worker can click on a query object in the given
scene. (2) is a slider that allows workers to adjust a parameter
to control the propagation of the selection area.

tools: “How can we diversify the errors produced by differ-
ent tools?” Because it is hard to predict what errors will be
induced by a given tool, we built tools specialized to work
well with objects with different characteristics, such as small
or transparent objects, objects with fuzzy materials, and re-
flective surfaces. These objects are current challenges to both
automatic segmentation methods and human annotators. The
way we built these tools increases the likelihood that each tool
performs differently for different types of objects, resulting
in greater error diversity. We categorized these object types
into three groups and created tools that are designed to min-
imize errors in each particular object category. The spaces
we explored and the tools we designed are summarized in
Figure 7. We used the Question (Q), Option (O), and Criteria
(C) representation [28] of the design space for deciding which
tools to build. The Question indicates a key design issue, the

Figure 7: Design space we considered when choosing the
tools for the study. We used the Question (Q), Option (O), and
Criteria (C) representation of the design space.

Option node suggests possible answers to the Question, and
the Criteria item represents the core properties expected from
choosing an Option. For one of the Options (O3 in Figure 7),
we differed the interface in two ways (Drag-and-Drop and
Pin-Placing) so that the interaction of users can create differ-
ent artifacts. We observed that different interactions lead to
different error patterns, so we include both of the tools in the
experiment section. In the rest of this section, we provide
detailed descriptions of the four tools developed.

Basic Trace
The first tool is a free-form drawing tool shown in Figure 3.
With Basic Trace, workers click and drag their mouse to trace
the outline of the query object in a scene (Figure 3 3). Once a
worker submits the initial trace line, a simple image processing
algorithm connects the gaps and fixes the irregularities in the
traced line in order to form a smooth shape. It then highlights
the pixels inside the traced shape, and returns the result as the
final object segmentation. Of the four tools, the Basic Trace
is the most manual, with the highest degree of freedom. The
strength of this tool is that it is highly flexible and workers
can segment any type of objects if sufficient time is given.
However, the weakness of the tool is that if a worker is idle
and not careful enough, the output can easily be very poor,
e.g., a worker may draw a rough box around an object instead
of carefully following the demarcation from the background.

Drag-and-Drop
The second tool lets workers select an object template from
a list (Figure 4 1), which is generated by searching images
of a target object from an image search engine like Google or
Bing. These images are then filtered for transparency and size,
and the top N (in this paper we use N = 12) are downloaded
to construct a template list for each query object. Workers are
asked to select the template that most accurately matches that
object in the scene based on its shape, proportion of dimen-
sions, and perspective. In Drag-and-Drop, workers overlay
their selected template onto the object identified in the scene

(Figure 4 2). Workers are able to scale, rotate, and drag the
template to adjust the angle and dimensions of the template
in an attempt to closely match the shape of the actual object.
Based on a worker’s transformation of the template, the system
determines the final object segmentation by identifying and
annotating the overlapping pixels between the template and
the scene. The strength of this tool is that it is very intuitive
to use. However, the weakness of the tool is that it is hard to
map deformable objects, or even rigid objects if being viewed
from different perspectives.

Pin-Placing
The third tool is also a template-based tool called Pin-Placing.
A template list is generated in the same manner as in Drag-
and-Drop (Figure 5 1). With this tool, workers select four
arbitrary points on their selected object template (Figure 5 2),
and pair them with four corresponding points on the object in
the scene (Figure 5 3). Workers can modify individual points,
or clear all points at once (Figure 5 4). After the four pairs of
points are submitted, an automatic transformation algorithm
is run to transform the template image to produce the final
object segmentation. Note that four pairs of control points are
the minimum necessary to perform a non-linear deformation
between two images, given the perspective limitation inherent
in a fixed-angle view in two dimension. Pin-Placing’s working
mechanism is similar to sophisticated techniques (e.g., that
professional radiologists use for diagnosing lesions), but it is
more intuitive to novice workers. One drawback of template-
based approaches is that if an object in a scene has an atypical
shape, none of the template images in the list may have a shape
similar to the object. In this case, a possible solution may be
to let workers ask to switch to a different tool that does not
require choosing a template image.

We note that the two template-based tools, Drag-and-Drop and
Pin-Placing, force workers to select occluded parts of a target
object when there exist overlaps with other objects. This is
a more useful functionality in domains like robotics, where
ground truth object geometry includes hidden parts as well.
However, in this study, we only consider the visible parts of
a target object as the region of interest because it is a more
general way of indicating objects in two-dimensional image
segmentation. As a consequence, the tools necessarily select
more false positive regions than the other tools.

Floodfill
Floodfill (AKA Bucket-fill) is a mostly autonomous tool, com-
bining a simple region growing method [35] with minimal
human input to initialize the seed point and tune a threshold
parameter. Workers click on the object they want to segment
(Figure 6 1) and adjust a slider to tune one of the algo-
rithm’s threshold parameters (Figure 6 2). This triggers the
RGB Floodfill algorithm which highlights all neighboring pix-
els sharing an RGB value similar to the seed point that was
clicked. If the segmentation is unsatisfactory, either failing to
select the entire object or exceeding the object boundary, work-
ers can adjust the slider to modify the highlighted area. The
tool is strong if the shape of an object is complex with many
curves, but only when the object is mostly monochromatic. If

a query object consists of polychromatic or shaded regions, the
selection area can be smaller than the actual object boundaries
because the algorithm cannot propagate across these regions.

SYSTEM INTERFACES
To collect image segmentations from the crowd, we created
a system named FourEyes that implements the tools above.
FourEyes begins by receiving a scene image and the user’s
request in the form of a natural language query, e.g., "mark the
bowl." The query is parsed to find nouns and then the nouns
are displayed to workers (Figure 3 2) in order to help identify
objects that need to be segmented from the scene. For each
tool, a short four to five steps of instruction including the target
object name is displayed to workers while conducting the task.
Also, workers can check the segmentation result before they
submit their work (“Check the Result” button in Figure 3 4).
To discourage workers from idling, we embedded a task timer
(Figure 3 5) that counts down from t seconds and goes into
negative when time runs out. In this paper, we used t = 30
in all experimental conditions. The timer does not impact
workers other than to serve as an encouragement to consider
time in their work.

EXPERIMENTS
To understand the effect of tool diversity on improving ag-
gregate crowd performance, we recruited 288 crowd workers
using LegionTools [10] and routed them from Amazon Me-
chanical Turk to FourEyes. Workers were given one of the four
tools to perform a task of image segmentation. Note that we
gave different tools to different workers because we consider
the smallest unit of microtask as one worker segmenting one
object using a single tool. We recruited six unique workers for
each tool-scene pair (four tools and 12 scenes), resulting in a
total of 1224 object segmentations.

Dataset
We chose a dataset that included various indoor objects. The
dataset included 12 different visual scenes, each containing
three to seven objects, for a total of 51 objects. The scenes
were gathered from publicly-available datasets1,2, and rep-
resent typical indoor scenarios with commonplace objects.
They ranged from a living room to a tabletop, and contained
everyday objects (e.g., a plant, laptop, soda can, cereal box,
flashlight, etc.). In the experiment, each worker was shown
one scene and a series of objects to segment depending on the
number of objects in the scene. For each task, the order of
objects in each list was randomized to avoid any ordering bias.
Each worker was given one scene with one tool to perform a
segmentation task.

Instructions and Payment
Before crowd workers could begin the task, they were shown
a short instructional video demonstrating the goal of the task
and how to use the tool they would be provided with. The two
tools Drag-and-Drop and Pin-Placing have longer videos be-
cause they explain choosing the most similar template image.
1https://rgbd-dataset.cs.washington.edu/dataset.html/
2https://www.doc.ic.ac.uk/ ahanda/VaFRIC/iclnuim.html/

This additional step delayed workers’ performance time in the
actual experiment as well. Workers were also shown pictures
exemplifying desired and undesired segmentations (same ex-
ample images for all tools) so that they understand the aim of
the task to create a detailed boundary of a target object in a
scene. If the worker decided to proceed, they were directed to
the FourEyes worker UI and their subsequent interactions with
the UI were recorded. Task instructions were also accessible
at any time if necessary (Figure 3 1). Each worker was paid
between $0.35 and $0.60 per task, proportional to the number
of objects they had to segment and on the expected time of a
given tool (a pay rate of ∼$10/hr). The expected time of each
tool was determined by its average latency time from a dozen
of preliminary experiments.

Segmentation Quality Evaluation
To assess success on the image segmentation task, we mea-
sured the accuracy of each by comparing the similarity to the
ground truth segmentation that was generated manually by the
authors for the experiments. One author carefully completed
the task and another author verified the quality of the resulting
ground truth.

We used precision, recall, and F1 score (the harmonic mean
of precision and recall) to compute the pixel-level similar-
ity (Equation 1). To do this, the number of true positive,
false positive, and false negative pixels were counted for each
crowdsourced segmentation.

Precision =
true positive

(true positive+ false positive)

Recall =
true positive

(true positive+ false negative)

F1Score =
2×Precision×Recall
(Precision+Recall)

(Eq. 1)

Results
The different tools had different error patterns (trade-offs) in
terms of precision and recall. Figure 8 shows example worker
segmentations from each tool, alongside the ground truth. Fig-
ure 9 shows precision-recall scatter plots of the segmentation
result with each dot representing one object. We averaged the
precision and recall of six workers who segmented the same
object with the same tool, so one dot represents the average
precision-recall of an object. As shown in Figure 9 (a) and (b),
Basic Trace and Drag-and-Drop tended to show high recall but
low precision. We observed that with these two tools, workers
tended to select objects by putting large margins around the
objects, resulting in high recall but low precision. Examples of
segmentation using these two tools are shown in Figure 8 (a)
and (b), respectively. Meanwhile, Pin-Placing resulted in the
most scattered performance as shown in Figure 9 (c). This
implies that the performance of the tool varies a lot depending
on object types. An example of using Pin-Placing is shown
in Figure 8 (c). In the example, a worker selected a template
image that is very different from the query object, resulting
in both low precision and low recall. Lastly, Figure 9 (d)

Figure 8: Original image (top left), ground truth image (bottom left), and exemplar segmentations using the four tools with their
precision and recall values reported on top. (a) Basic Trace, (b) Drag-and-Drop, (c) Pin-Placing, and (d) Floodfill. In summary, the
different tools have different precision-recall patterns. Therefore, we can expect that EM-based multiple tool aggregation would
increase the overall accuracy of the segmentation task.

(a) Basic Trace (b) Drag-and-Drop (c) Pin-Placing (d) Floodfill

Figure 9: Precision-recall scatter plot of four different tools. We can see that the error patterns are diverse across different tools in
terms of precision and recall. Basic Trace (a) and Drag-and-Drop (b) show high recall but low precision, Pin-Placing (c) shows the
most scattered pattern, implying that the tool’s performance highly depends on the query object, and Floodfill (d) shows high
precision but low recall.

Precision Recall F1 score
Basic Trace 0.62 (0.14) 0.89 (0.12) 0.71 (0.13)

Drag-and-Drop 0.57 (0.14) 0.86 (0.15) 0.66 (0.13)
Pin-Placing 0.53 (0.17) 0.71 (0.17) 0.58 (0.17)

Floodfill 0.84 (0.11) 0.63 (0.25) 0.67 (0.20)

Table 1: Average performance (and standard deviation) of the
four individual tools.

shows that Floodfill tended to give high precision but low re-
call performance. We observed that the selection area with
Floodfill tended to be smaller than the actual object bound-
aries due to boundaries that were shaded or colored differently.
An example segmentation of using Floodfill is shown in Fig-
ure 8 (d). Because one side of the vase was much brighter,
a worker could not select the entire image with the seeded
region growing algorithm.

Average accuracy metrics for each tool are summarized in
Table 1. Since F1 score is the harmonic mean of precision
and recall, we use F1 score as our measure of overall accuracy.
In general, Floodfill gave the best performance in terms of
precision and Basic Trace gave the best recall and F1 score.

To calculate latency, we measured overall task time starting
from when the worker began interacting with the task to when
the worker clicked “submit” at the end of the task. After drop-
ping outliers more than two standard deviations (2σ) from
the mean latency, Basic Trace’s average latency was 14.37
seconds (σ = 8.08), Drag-and-Drop’s was 24.89 seconds
(σ = 11.25), Pin-Placing’s was 20.77 seconds (σ = 7.90),
and Floodfill’s was 12.62 seconds (σ = 10.41). The template-
based tools had a higher segmentation latency than the other
two tools. This was expected because the template-based tools
are more involved and perhaps less intuitive to general-purpose
crowd workers. Using Floodfill, some workers managed to

Precision Recall F1 score
Basic Trace 0.62 (0.17) 0.99 (0.04) 0.74 (0.14)

Drag-and-Drop 0.57 (0.16) 0.95 (0.11) 0.69 (0.14)
Pin-Placing 0.56 (0.17) 0.82 (0.16) 0.66 (0.16)

Floodfill 0.86 (0.12) 0.69 (0.23) 0.73 (0.17)

Table 2: Average performance (and standard deviation) of
pixel-level majority voting on single-tool aggregation.

produce a satisfactory segmentation within three seconds, but
others spent extra time trying to perfect their segmentation,
with diminishing returns in accuracy.

From these primary results, we observed different error pat-
terns (Figure 9) across the four tools that we designed. The
result matches our design intent to diversify the errors pro-
duced by different tools. Now we can think of each tool as
alternate hypotheses h1, h2, h3, and h4 of the optimal hypothe-
sis f , with different error biases b1, b2, b3, and b4, respectively.
As in ensemble learning, we expect that aggregating the dif-
ferent tool pairs will improve the output accuracy by reducing
accumulated systematic error biases.

COMPARISON OF AGGREGATION METHODS
In order to evaluate the effectiveness of our tool diversity
approach, we conducted a series of studies to examine the
performance improvement achieved from an ensemble of two
tools. As a baseline condition, we first investigate the seg-
mentation quality of single tool aggregation based on majority
voting of four different workers. We implement a pixel-level
majority voting method, with each answer weighted equally.
In the second study, we do the same majority voting, except
on two tool pairs combining four workers’ answers from two
different tools. In the last study, we apply the EM method on
multiple tool aggregation of two tools to optimize the tools’
weights adaptively per object. Our studies show that the tool
diversity approach is a safe design strategy that guarantees
performance at least as good as the superior constituent tool.

Method 1. Single-Tool Aggregation (Baseline)
Single tool aggregation combines answers from the four work-
ers who used the same tool to segment target objects. We
ran 10 random sampling of all possible worker pairs from the
collected data. This was performed to avoid any bias from
accidentally choosing a good or bad pair of workers. For each
query object in the scene, pixel-level majority voting was per-
formed to annotate each pixel as either background or object.
If more than two workers labeled a pixel as belonging to the
query object, then the pixel was included. The accuracy of
the final segmentation was computed as in the Segmentation
Quality Evaluation section. The results of 10 random sam-
pling were averaged per each query object. We summarized
the average results in Table 2.

The change in precision was not significant with single tool
aggregation compared to the average precision without aggre-
gation. However, recall and F1 scores improved. For example,
recall of Basic Trace increased by 11% (p < .01) compared
to its average performance without aggregation (see Table 1).

The increase in recall is a natural consequence of answer ag-
gregation with low agreement thresholds. If the agreement
threshold is higher, recall would decrease because more con-
sensus is needed to annotate a pixel as an ‘object’. In the next
sections, we observe if and how further improvements can be
achieved with multiple tool aggregation.

Method 2. Multiple Tool Aggregation (Uniform Voting)
Adding multiple tools for the same task can improve the ag-
gregate accuracy when the tools compensate systematic error
biases of each other. In this section, we focus on the results of
two-tool pairs to provide a more in-depth evaluation and dis-
cussion. For all possible pairs of two tools, we ran 10 random
sampling and chose two workers from each tool (combinations
of six things, taken two at a time), a total of four workers. The
average performance of all possible tool pairs as in Method 1
is summarized in Table 3.

Precision Recall F1 score
Basic Trace ×
Drag-and-Drop 0.61 (0.13) 0.99 (0.02) 0.74 (0.10)

Basic Trace ×
Pin-Placing 0.60 (0.13) 0.95 (0.07) 0.72 (0.11)

Basic Trace ×
Floodfill 0.74 (0.13) 0.93 (0.12) 0.81 (0.12)

Drag-and-Drop ×
Pin-Placing 0.57 (0.15) 0.92 (0.11) 0.69 (0.13)

Drag-and-Drop ×
Floodfill 0.70 (0.12) 0.92 (0.09) 0.78 (0.09)

Pin-Placing ×
Floodfill 0.70 (0.13) 0.86 (0.13) 0.76 (0.12)

Table 3: Average performance (and standard deviation) of
pixel-level majority voting of all possible tool pairs.

Multiple tool aggregation improves F1 scores compared to
single tool aggregation. Every tool pair except Basic Trace ×
Pin-Placing (0.72) showed increased F1 scores compared to
the single constituent tools. The pair gave better F1 scores than
aggregating Pin-Placing alone (0.66), but gave a 2.7% lower
F1 score than aggregating Basic Trace alone (0.74). How-
ever, there was no statistically significant difference between
single tool aggregation of Basic Trace versus multiple tool
aggregation of Basic Trace × Pin-Placing pair. One notable
finding about the result is that the highest F1 score achiev-
able from single tool aggregation is 0.74 (aggregating Basic
Trace alone), whereas that from multiple tool aggregation is
0.81 (aggregating Basic Trace × Floodfill pair), which is a
9.5% (p < .01) performance improvement with mixing tools.
To emphasize the performance improvement in terms of F1
score, we compared the F1 scores of multiple tool aggregations
(blue bars) with their constituent tools (red and green bars) in
Figure 10.

Method 3. Multiple Tool Aggregation (EM method)
For this study, we used the same 10 worker groupings from
Method 2 to do a fair performance comparison. We used the
EM method from Dawid and Skene [6] to estimate the labels

Figure 10: Accuracy (F1 score) comparison of different aggregation methods based on four tools: Basic Trace (T1), Drag-and-Drop
(T2), Pin-Placing (T3), and Floodfill (T4). Blue bars are multiple tool aggregation with majority voting and purple bars are multiple
tool aggregation with the EM method. Red bars are single tool aggregation of the better performing tool and green bars are single
tool aggregation of the less performing tool among the two constituent tools. * significant at p < .05; ** significant at p < .01 both
compared to EM-based multiple tool aggregation (two tailed t-test). The tool diversity strategy always performed significantly
better than the inferior constituent tool, and performed at least comparable to the superior tool.

of each pixel. We consider the ground truth labels as latent
variables and estimate them jointly with the unknown parame-
ters, the weight per tool, of our model. We model our problem
of estimating the correct consensus image segmentations as
follows:

Assume M crowd workers segment an object in an image A
having N total pixels. Each pixel is labeled as either 1 (object)
or 0 (background) by workers. The label a worker m assigns to
each pixel is denoted as zmn ∈{0,1}. We denote all labels from
worker m as a vector Zm. The true label Yn, where n = 1, . . . ,N,
of each pixel is unknown. The true labels of A to be estimated
are denoted as a vector Y . In the Dawid-Skene algorithm, it
is assumed that the probability of worker m labeling a pixel
is independent of choosing a pixel, i.e., it is a constant over n.
In addition, we denote by θ the confusion matrices set to be
estimated. We can estimate the true labels Y by maximizing
the marginal log-likelihood of the observed worker labels.

l(θ) := log
(

∑
Y∈{0,1}n

L(θ ;Y ,Z)
)
. (Eq. 2)

The EM algorithm works iteratively by applying two steps:
the expectation step and the maximization step.

E Step: Calculate the expected value of the log-likelihood
function, with respect to the conditional distribution of Y given
Z under the current estimate of θ :

M Step: Find the estimate θ that maximizes the expectation
of marginal log-likelihood.

The E and M steps are repeated until the estimations converge.
The diagram on the right side of Figure 2 shows how the
process is applied to our problem. The scene image is given
as an input to two tools h1 and h2 that have different error
models b1 and b2, respectively. Crowd workers use the tools

to segment a query object, and the responses are transferred to
the EM algorithm. Initial latent variables are set as the majority
voting result, and the confusion matrix for each response is
updated based on the initial assumption of the latent variables.
Confusion matrices are updated by counting the number of
false positive, false negative, true positive, and true negative
pixels. Once the confusion matrices are updated for every
pixel, the new estimations of latent variables are updated until
convergence. The accuracy of multiple tool aggregation with
the EM method is summarized in Table 3. The comparison of
F1 scores of the tool pairs with that of the constituent tools is
summarized in Figure 10. The numbers for majority voting
on single tool aggregation are obtained from Method 1, and
the numbers for majority voting on multiple tool aggregation
are obtained from Method 2. The p-values were computed
using two tailed t-tests with Bonferroni correction applied
after each t-test. The results show that the EM-based multiple
tool aggregation always performed significantly better than
the inferior constituent tool, and performed at least as well as
the superior constituent tool.

The summarized result shows that the EM method signifi-
cantly improves the performance of the tool pairs compared to
uniform majority voting, except for the two tool pairs (Drag-
and-Drop × Floodfill pair and Pin-Placing × Floodfill pair).
From these exceptions, we observed that the trade-off between
precision and recall was low because drop in recall was larger
than the gain in precision, resulting in the overall F1 scores
not benefiting much from using the EM algorithm. Although
there was a significant performance improvement, the gain
using EM was small (under 3%).

DISCUSSION
We observed that the two highest aggregate-performance tool
pairs were combinations of a high-precision (but low-recall)

Precision Recall F1 score
Basic Trace ×
Drag-and-Drop 0.63 (0.14) 0.98 (0.02) 0.75 (0.11)

Basic Trace ×
Pin-Placing 0.63 (0.14) 0.93 (0.09) 0.74 (0.12)

Basic Trace ×
Floodfill 0.75 (0.13) 0.93 (0.12) 0.81 (0.12)

Drag-and-Drop ×
Pin-Placing 0.59 (0.15) 0.90 (0.12) 0.70 (0.13)

Drag-and-Drop ×
Floodfill 0.71 (0.13) 0.90 (0.11) 0.78 (0.10)

Pin-Placing ×
Floodfill 0.72 (0.14) 0.81 (0.14) 0.75 (0.14)

Table 4: Average performance (and standard deviation) of
all possible tool pairs using per-pixel EM algorithm-based
weighted voting.

tool and a high-recall (but low-precision) tool, as shown in the
third and fifth bar groups in Figure 10. Precision and recall
often have an inverse relationship, where one can be increased
at the cost of reducing the other. In the crowdsourcing litera-
ture, research has investigated different payment schemes to
observe the trade-off between precision and recall on object
annotation tasks [29]. Our work suggests that different tools
can be built to target either high precision or high recall so that
the harmonic means of both can be maximized by aggregating
results from two methods. More generally, our results indi-
cate that leveraging tool diversity in crowdsourcing tasks can
improve aggregate crowd performance by compensating for
various types of inherent individual systematic error biases.

Generalizability
While we demonstrate this new crowdsourcing paradigm using
an image segmentation task, it could benefit any task where
different approaches to solving the same problem can be de-
vised. Specifically, tasks that have the following properties
would be especially amenable to our approach:
• Expected correctness grows non-negatively with added

worker input. In other words, on average, quality improves
(collective answers converges to correct) as more worker
responses are collected. Problems where majority voting
works would belong to this class.

• The task is tractable enough to yield approximately-correct
responses from workers, but responses can be expected to
have imperfections. asks such as real-time captioning [18]
or handwriting recognition [30] are examples of such tasks.

• The task has an objectively correct answer, but also toler-
ates imperfections from workers’ responses. For example,
creative writing tasks would not be a good fit because there
is no single correct answer, and they do not tolerate imper-
fections well (e.g., incomplete sentences).

• The expected human error is distributed differently when
using different tools. This way, a diverse tool set can com-
plement a broad range of error types. If this were not the
case (i.e., if the errors were all biased in the same direction),

then we would not expect multiple tools to be significantly
more effective than a single one alone.

Many common crowdsourcing problems (e.g., in computer
vision, natural language processing, or robotic/UI manipula-
tion) have these properties, suggesting that a range of domains
beyond the one explored in this paper may also benefit from
our approach.

CONCLUSION AND FUTURE WORK
In this paper, we have introduced a generalizable crowdsourc-
ing approach of leveraging tool diversity to increase output
accuracy of a system. When building a crowd-powered system,
different tool designs can induce different worker performance,
leading to systematic error biases when only a single tool is
used for a task. We have shown that these systematic error
biases can be reduced by using multiple tools to improve ag-
gregate crowd performance on image segmentation tasks.

Overall, our findings open new opportunities and directions for
pursuing a deeper understanding of how tool designs influence
the aggregate performance on diverse crowdsourcing tasks.
Future work may investigate ways to generalize methodolo-
gies for leveraging tool diversity in other domains, such as
video coding [17], annotation of fine-grained categories [9],
or activity recognition [21]. Tool diversity may also help
seamlessly integrate computer and human input [31] to more
efficiently train machine learning algorithms.

ACKNOWLEDGMENTS
The authors would like to thank Stephanie O’Keefe and Kyle
Wang for their input on this work. This research was supported
in part by the Denso Corporation, Toyota Research Institute,
and MCity at the University of Michigan. This research was
also supported in part by the Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (NRF-2017M3C4A7065960).

REFERENCES
1. Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and

Li Fei-Fei. 2016. What’s the point: Semantic
segmentation with point supervision. In European
Conference on Computer Vision. Springer, 549–565.

2. Sean Bell, Paul Upchurch, Noah Snavely, and Kavita
Bala. 2013. OpenSurfaces: A richly annotated catalog of
surface appearance. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 111.

3. Michael S Bernstein, Greg Little, Robert C Miller, Björn
Hartmann, Mark S Ackerman, David R Karger, David
Crowell, and Katrina Panovich. 2015. Soylent: a word
processor with a crowd inside. In Communications of the
ACM, Vol. 58. ACM, 85–94.

4. Jonathan Bragg, Mausam, and Daniel S. Weld. 2013.
Crowdsourcing multi-label classification for taxonomy
creation. In First AAAI conference on human computation
and crowdsourcing.

5. Axel Carlier, Vincent Charvillat, Amaia Salvador, Xavier
Giro-i Nieto, and Oge Marques. 2014. Click’n’Cut:

Crowdsourced interactive segmentation with object
candidates. In Proceedings of the 2014 International
ACM Workshop on Crowdsourcing for Multimedia. ACM,
53–56.

6. Alexander Philip Dawid and Allan M Skene. 1979.
Maximum likelihood estimation of observer error-rates
using the EM algorithm. Applied statistics (1979), 20–28.

7. Thomas G Dietterich and others. 2000. Ensemble
methods in machine learning. Multiple classifier systems
1857 (2000), 1–15.

8. Yoav Freund and Robert E Schapire. 1995. A
desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on
computational learning theory. Springer, 23–37.

9. Timnit Gebru, Jonathan Krause, Jia Deng, and Li Fei-Fei.
2017. Scalable annotation of fine-grained categories
without experts. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems.
ACM, 1877–1881.

10. Mitchell Gordon, Jeffrey P Bigham, and Walter S
Lasecki. 2015. LegionTools: a toolkit+ UI for recruiting
and routing crowds to synchronous real-time tasks. In
Adjunct Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. ACM, 81–82.

11. Sai Gouravajhala, Jean Y Song, Jinyeong Yim, Raymond
Fok, Yanda Huang, Fan Yang, Kyle Wang, Yilei An, and
Walter S Lasecki. 2017. Towards Hybrid Intelligence for
Robotics. Collective Intelligence Conference (CI) (2017).

12. Danna Gurari, Mehrnoosh Sameki, and Margrit Betke.
2016. Investigating the Influence of Data Familiarity to
Improve the Design of a Crowdsourcing Image
Annotation System. HCOMP (2016).

13. Lars Kai Hansen and Peter Salamon. 1990. Neural
network ensembles. IEEE transactions on pattern
analysis and machine intelligence 12, 10 (1990),
993–1001.

14. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. 2017. Mask R-CNN. CoRR abs/1703.06870
(2017).

15. Harmanpreet Kaur, Mitchell Gordon, Yiwei Yang,
Jeffrey P Bigham, Jaime Teevan, Ece Kamar, and
Walter S Lasecki. 2017. Crowdmask: Using crowds to
preserve privacy in crowd-powered systems via
progressive filtering. In Proceedings of the AAAI
Conference on Human Computation (HCOMP 2017).,
HCOMP, Vol. 17.

16. Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J. Guo,
Robert C. Miller, and Krzysztof Z. Gajos. 2014.
Crowdsourcing Step-by-step Information Extraction to
Enhance Existing How-to Videos. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 4017–4026.

17. Walter S. Lasecki, Mitchell Gordon, Danai Koutra,
Malte F. Jung, Steven P. Dow, and Jeffrey P. Bigham.

2014. Glance: Rapidly coding behavioral video with the
crowd. In Proceedings of the 27th annual ACM
symposium on User interface software and technology.
ACM, 551–562.

18. Walter S. Lasecki, Christopher Miller, Adam Sadilek,
Andrew Abumoussa, Donato Borrello, Raja Kushalnagar,
and Jeffrey Bigham. 2012. Real-time captioning by
groups of non-experts. In Proceedings of the 25th annual
ACM symposium on User interface software and
technology. ACM, 23–34.

19. Walter S. Lasecki, Christopher D. Miller, and Jeffrey P.
Bigham. 2013. Warping Time for More Effective
Real-time Crowdsourcing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2033–2036.

20. Walter S. Lasecki, Kyle I. Murray, Samuel White,
Robert C. Miller, and Jeffrey P. Bigham. 2011. Real-time
crowd control of existing interfaces. In Proceedings of
the 24th annual ACM symposium on User interface
software and technology. ACM, 23–32.

21. Walter S. Lasecki, Young Chol Song, Henry Kautz, and
Jeffrey P. Bigham. 2013. Real-time crowd labeling for
deployable activity recognition. In Proceedings of the
2013 conference on Computer supported cooperative
work. ACM, 1203–1212.

22. Matthew Lease, Jessica Hullman, Jeffrey P Bigham,
Michael S Bernstein, Juho Kim, Walter S. Lasecki,
Saeideh Bakhshi, Tanushree Mitra, and Robert C Miller.
2013. Mechanical turk is not anonymous. Social Science
Research Network (SSRN) (2013).

23. Christopher H. Lin, Mausam Daniel, and S. Weld. 2012.
Crowdsourcing control: Moving beyond multiple choice.
In In: Proceedings of the 28th Conference on Uncertainty
in Artificial Intelligence, UAI.

24. Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
2016. Scribblesup: Scribble-supervised convolutional
networks for semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition. 3159–3167.

25. Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer
vision. Springer, 740–755.

26. Jonathan Long, Evan Shelhamer, and Trevor Darrell.
2015. Fully Convolutional Networks for Semantic
Segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

27. Alan Lundgard, Yiwei Yang, Maya L. Foster, and
Walter S. Lasecki. 2018. Bolt: Instantaneous
Crowdsourcing via Just-in-Time Training. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). ACM, New York, NY,
USA.

28. Allan MacLean, Richard M Young, Victoria ME Bellotti,
and Thomas P Moran. 1991. Questions, options, and
criteria: Elements of design space analysis.
Human–computer interaction 6, 3-4 (1991), 201–250.

29. Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz,
Megan E Schwamb, Chris J Lintott, and Arfon M Smith.
2013. Volunteering versus work for pay: Incentives and
tradeoffs in crowdsourcing. In First AAAI conference on
human computation and crowdsourcing.

30. Tom Ouyang and Yang Li. 2012. Bootstrapping Personal
Gesture Shortcuts with the Wisdom of the Crowd and
Handwriting Recognition. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 2895–2904.

31. Olga Russakovsky, Li-Jia Li, and Li Fei-Fei. 2015. Best
of both worlds: human-machine collaboration for object
annotation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2121–2131.

32. Bryan C Russell, Antonio Torralba, Kevin P Murphy, and
William T Freeman. 2008. LabelMe: a database and
web-based tool for image annotation. International
journal of computer vision 77, 1 (2008), 157–173.

33. Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y Ng. 2008. Cheap and fast—but is it good?:

evaluating non-expert annotations for natural language
tasks. In Proceedings of the conference on empirical
methods in natural language processing. Association for
Computational Linguistics, 254–263.

34. Saiganesh Swaminathan, Raymond Fok, Fanglin Chen,
Ting-Hao Kenneth Huang, Irene Lin, Rohan Jadvani,
Walter S. Lasecki, and Jeffrey P. Bigham. 2017.
WearMail: On-the-Go Access to Information in Your
Email with a Privacy-Preserving Human Computation
Workflow. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
ACM, 807–815.

35. Shane Torbert. 2016. Applied computer science. Springer.
158 pages.

36. Peter Welinder, Steve Branson, Pietro Perona, and
Serge J. Belongie. 2010. The Multidimensional Wisdom
of Crowds. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2424–2432.

37. Jacob Whitehill, Ting fan Wu, Jacob Bergsma, Javier R.
Movellan, and Paul L. Ruvolo. 2009. Whose Vote Should
Count More: Optimal Integration of Labels from
Labelers of Unknown Expertise. In Advances in Neural
Information Processing Systems. Curran Associates, Inc.,
2035–2043.

	Introduction
	Related Work
	Crowdsourcing Workflows
	Improving Output Quality by Aggregating Answers

	Approach
	Choosing the Tools
	Basic Trace
	Drag-and-Drop
	Pin-Placing
	Floodfill

	System Interfaces
	Experiments
	Dataset
	Instructions and Payment
	Segmentation Quality Evaluation
	Results

	Comparison of Aggregation Methods
	Method 1. Single-Tool Aggregation (Baseline)
	Method 2. Multiple Tool Aggregation (Uniform Voting)
	Method 3. Multiple Tool Aggregation (EM method)

	Discussion
	Generalizability

	Conclusion and Future Work
	Acknowledgments
	References

