
Juho Kim 
juhokim@mit.edu 

November 24, 2014 

Faculty Search Committee 
Department of Communication Studies 
Northwestern University 

 

Dear Faculty Search Committee Members: 

I am a Ph.D. candidate in Electrical Engineering and Computer Science at the Massachusetts Institute of 
Technology, focusing on Human-Computer Interaction research. I work in the User Interface Design 
Group in the Computer Science and Artificial Intelligence Laboratory, advised by Professor Robert C. 
Miller at MIT CSAIL and Professor Krzysztof Z. Gajos at the Harvard School of Engineering and Applied 
Sciences. I expect to complete my dissertation by June 2015, and I am interested in applying for the 
advertised tenure-track faculty position in Computation and Communication (Search No. 24144). 

I build interactive technologies powered by large-scale user data. I am interested in designing and 
studying sociotechnical systems that support massive-scale collaboration, information sharing, and 
learning. My thesis research on learnersourcing proposes methods and design paradigms in which the 
byproduct of learning generates structured information difficult to collect at scale. My research uniquely 
combines crowdsourcing, social computing, visual and textual content analysis, and learning science, and 
introduces computational and social mechanisms to collect, process, and present structured information 
at scale. 

I am passionate about teaching and mentoring. I plan to apply active learning methods to my courses, 
focusing on supporting high interactivity, learning by doing, and immediate feedback. I would be happy to 
teach courses in HCI and intro-level computer science and programming, as well as graduate-level 
courses covering crowdsourcing, social computing, and learning at scale. 

I have asked that five letters of recommendation be sent to you on my behalf. The writers are: 
    Robert C. Miller (co-advisor):   rcm@mit.edu   
    Krzysztof Z. Gajos (co-advisor):  kgajos@eecs.harvard.edu  
    Meredith Ringel Morris:   merrie@microsoft.com  
    Haoqi Zhang:    hq@northwestern.edu   
    Philip J. Guo:    pg@cs.rochester.edu   

My application materials, including my CV, research statement, teaching statement, and representative 
papers are enclosed. You can also find copies of my application materials at http://juhokim.com/. The 
best way to contact me is via email at juhokim@mit.edu, or by phone at (650) 796-9759. 

Thanks in advance for your consideration, and please contact me if you need additional information. 

Sincerely, 
Juho Kim 
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J U H O  K I M  MIT CSAIL  |  32 Vassar Street, 32-G707, Cambridge, MA 02139 
650.796.9759  |  juhokim@mit.edu  |  www.juhokim.com 

E D U C A T I O N  

Massachusetts Institute of Technology Cambridge, MA 
Ph.D. candidate in Electrical Engineering and Computer Science (CSAIL) Sep.2010–Present 
Advisors: Robert C. Miller & Krzysztof Z. Gajos. Expected: June 2015 

Stanford University Stanford, CA 
M.S. in Computer Science (Specialization: Human-Computer Interaction) Sep.2008–Jun.2010 
Advisor: Scott R. Klemmer 

Seoul National University Seoul, Korea 
B.S. in Computer Science and Engineering Jun.2008 
Graduated with honors (Summa Cum Laude) 

R E S E A R C H  I N T E R E S T S  

Human-Computer Interaction, Learning at scale, Data-driven interaction, Crowdsourcing, Learnersourcing 

E M P L O Y M E N T  

User Interface Design Group, MIT CSAIL Cambridge, MA 
Research Assistant. Mentor: Robert C. Miller  Sep.2010–Present 

Microsoft Research Redmond, WA 
Research Intern. Mentors: Meredith R. Morris & Andrés Monroy-Hernández  May 2014–Aug. 2014 

Learning Sciences Team, edX Cambridge, MA 
Research Intern. Mentor: Piotr Mitros  May 2013–Aug.2013 

Creative Technologies Lab, Adobe Systems Inc. San Francisco, CA 
Research Intern. Mentor: Joel Brandt  May 2011–Sep.2011 

USER Group, IBM Almaden Research Center San Jose, CA 
Research Intern. Mentors: Eser Kandogan & Thomas P. Moran  May 2010–Aug.2010 

HCI Group, Stanford University Stanford, CA 
Research Assistant. Mentor: Scott R. Klemmer  Apr.2009–Jun.2010 

SystemBase Co., Ltd. Seoul, Korea 
Project Manager & Embedded Software Engineer  Dec.2004–Sep.2007 

Samsung Electronics Co., Ltd. Software Center Suwon, Korea 
Summer Intern Jul.2003–Aug.2003 

P U B L I C A T I O N S  

Conference Papers 
[c.13] Learnersourcing Subgoal Labels for How-to Videos. 

   Sarah Weir, Juho Kim, Krzysztof Z. Gajos, & Robert C. Miller. 
CSCW 2015: ACM Conference on Computer-Supported Cooperative Work and Social Computing.  
To appear. (28.3% acceptance rate, 11 pages, with revise-and-resubmit cycle) 
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[c.12] Data-Driven Interaction Techniques for Improving Navigation of Educational Videos.  
   Juho Kim, Philip J. Guo, Carrie J. Cai, Shang-Wen (Daniel) Li, Krzysztof Z. Gajos, & Robert C. Miller. 

UIST 2014: ACM Symposium on User Interface Software and Technology. (22.2% acceptance rate, 10 pages) 

[c.11] Content-Aware Kinetic Scrolling for Supporting Web Page Navigation.  
   Juho Kim, Amy X. Zhang, Jihee Kim, Robert C. Miller, & Krzysztof, Z. Gajos. 

UIST 2014: ACM Symposium on User Interface Software and Technology. (22.2% acceptance rate, 5 pages) 

[c.10] Attendee-sourcing: exploring the design space of community-informed conference scheduling.  
   Anant Bhardwaj, Juho Kim, Steven P. Dow, David Karger, Sam Madden, Robert C. Miller, & Haoqi Zhang. 

HCOMP 2014: AAAI Conference on Human Computation & Crowdsourcing. (32% acceptance rate, 9 pages) 

[c.9] Crowdsourcing step-by-step information extraction to enhance existing how-to videos.  
   Juho Kim, Phu Nguyen, Sarah Weir, Philip J. Guo, Robert C. Miller, & Krzysztof Z. Gajos.  

CHI 2014: ACM Conference on Human Factors in Computing Systems. (22.8% acceptance rate, 10 pages) 
Honorable Mention Award (top 5%).  

[c.8] Frenzy: collaborative data organization for creating conference sessions.  
Lydia Chilton, Juho Kim, Paul André, Felicia Cordeiro, James Landay, Dan Weld, Steven P. Dow, 
Robert C. Miller, & Haoqi Zhang.  
CHI 2014: ACM Conference on Human Factors in Computing Systems. (22.8% acceptance rate, 10 pages)  
Honorable Mention Award (top 5%).  

[c.7] Understanding in-video dropouts and interaction peaks in online lecture videos.  
   Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros, Krzysztof Z. Gajos, & Robert C. Miller.  
   L@S 2014: ACM Conference on Learning at Scale. (35% acceptance rate, 10 pages) 

[c.6] How video production affects student engagement: an empirical study of MOOC videos.  
   Philip J. Guo, Juho Kim, & Rob Rubin.  

L@S 2014: ACM Conference on Learning at Scale. (35% acceptance rate, 10 pages) 

[c.5] Community clustering: leveraging an academic crowd to form coherent conference sessions.  
   Paul André, Haoqi Zhang, Juho Kim, Lydia B. Chilton, Steven P. Dow, & Robert C. Miller.   

HCOMP 2013: AAAI Conference on Human Computation & Crowdsourcing. (30% acceptance rate, 8 pages) 
Notable Paper Award.  

[c.4] Cobi: a community-informed conference scheduling tool.  
Juho Kim, Haoqi Zhang, Paul André, Lydia B. Chilton, Wendy Mackay, Michel Beaudouin-Lafon, 
Robert C. Miller, & Steven P. Dow.  
UIST 2013: ACM Symposium on User Interface Software and Technology. (20% acceptance rate, 10 pages) 

[c.3] Social visualization and negotiation: effects of feedback configuration and status.  
   Michael Nowak, Juho Kim, Nam Wook Kim, & Clifford Nass.  

CSCW 2012: ACM Conference on Computer-Supported Cooperative Work.  
(40% acceptance rate, 10 pages, with revise-and-resubmit cycle) 

[c.2] How a freeform spatial interface supports simple problem solving tasks.  
   Eser Kandogan, Juho Kim, Thomas P. Moran, & Pablo Pedemonte.  
   CHI 2011: ACM Conference on Human Factors in Computing Systems. (26% acceptance rate, 10 pages) 

[c.1] Evolutionary topic maps.  
   Juho Kim, Won-Wook Hong, & Robert Ian McKay.  
   KHCI 2009: HCI Korea Conference. (5 pages) 
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Conference Papers in Submission (under review) 
[u.6] RIMES: Embedding Interactive Multimedia Exercises in Lecture Videos. 

Juho Kim, Elena L. Glassman, Andrés Monroy-Hernández, Meredith Ringel Morris. 
In submission to CHI 2015 (under review) 

[u.5] Mudslide: A Spatially Anchored Census of Student Confusion for Online Lecture Videos. 
Elena L. Glassman, Juho Kim, Andrés Monroy-Hernández, Meredith Ringel Morris. 
In submission to CHI 2015 (under review) 

[u.4] Factful: Engaging Taxpayers in the Public Discussion of a Government Budget. 
    Juho Kim, Eun-Young Ko, Jonghyuk Jung, Chang Won Lee, Nam Wook Kim, Jihee Kim. 

In submission to CHI 2015 (under review) 

[u.3] BudgetMap: Supporting Issue-Driven Navigation for Government Budget. 
Nam Wook Kim, Chang Won Lee, Jonghyuk Jung, Eun-Young Ko, Juho Kim, Jihee Kim. 
In submission to CHI 2015 (under review) 

[u.2] Mining Attendee Data to Improve Academic Conferences. 
Anant Bhardwaj, Juho Kim, Steven P. Dow, David Karger, Sam Madden, Robert C. Miller, Haoqi 
Zhang. 
In submission to CHI 2015 (under review) 

[u.1] Apparition: Crowdsourced User Interfaces That Come To Life As You Sketch Them. 
Walter Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffery Bigham, Michael Bernstein. 
In submission to CHI 2015 (under review) 

Posters, Demos, and Workshop Papers 
[p.15] Workshop on Connecting Collaborative & Crowd Work with Online Education.  

Joseph Jay Williams, Markus Krause, Praveen Paritosh, Jacob Whitehill, Justin Reich, Juho Kim, 
Piotr Mitros, & Neil Heffernan. 
CSCW 2015. (to appear) 

[p.14] Leveraging video interaction and content to improve video learning. 
Juho Kim. 
HCOMP 2014 Workshop on Crowdsourcing, Online Education, and Massive Open Online Courses. 

[p.13] Leveraging video interaction and content to improve video learning. 
Juho Kim, Shang-Wen (Daniel) Li, Carrie J. Cai, Krzysztof Z. Gajos, & Robert C. Miller. 
CHI 2014 Workshop on Learning Innovation at Scale. 

[p.12] Interaction peaks and data-driven interfaces for online lecture videos. 
Juho Kim. 
Quanta-CSAIL 2014 workshop poster. 

[p.11] Enhancing how-to videos with crowdsourcing and learnersourcing. 
Juho Kim. 
Quanta-CSAIL 2014 workshop poster. 

[p.10] Cobi: community-informed conference scheduling.  
Juho Kim, Haoqi Zhang, Paul André, Lydia B. Chilton, Anant Bhardwaj, David Karger, Steven P. Dow, 
& Robert C. Miller. 
HCOMP 2013 demo. 

[p.9] User interfaces and crowdsourcing workflows for enhancing the video learning experience.  
Juho Kim, Phu Nguyen, Robert C. Miller, & Krzysztof Z. Gajos.  
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SoCS 2013 Doctoral Symposium. 

[p.8] Learnersourcing subgoal labeling to support learning from how-to videos.  
Juho Kim, Robert C. Miller, & Krzysztof Z. Gajos.  
CHI2013 Extended Abstracts. (32% acceptance rate) 

[p.7] ToolScape: enhancing the learning experience of how-to videos.  
Juho Kim.  
CHI2013 Extended Abstracts. (32% acceptance rate)  
2nd place, Student Research Competition. 

[p.6] Generating annotations for how-to videos using crowdsourcing.  
Phu Nguyen, Juho Kim, & Robert C. Miller.  
CHI2013 Extended Abstracts. (32% acceptance rate) 

[p.5] Cobi: communitysourcing large-scale conference scheduling.  
Haoqi Zhang, Paul André, Lydia Chilton, Juho Kim, Steven P. Dow, Robert C. Miller, Wendy MacKay, 
& Michel Beaudouin-Lafon.  
CHI2013 Interactivity. (32% acceptance rate) 

[p.4] Mechanical Turk is Not Anonymous.  
Matthew Lease, Jessica Hullman, Jeffrey P. Bigham, Michael S. Bernstein, Juho Kim, Walter S. 
Lasecki, Saeideh Bakhshi, Tanushree Mitra, & Robert C. Miller.  
Social Science Research Network (SSRN) Online, March 6, 2013. SSRN ID: 2228728. 

[p.3] Photoshop with friends: a synchronous learning community for graphic design.  
Juho Kim, Ben Malley, Joel Brandt, Mira Dontcheva, Diana Joseph, Krzysztof Z. Gajos, & Robert C. Miller.  
CSCW 2012 Interactive Demo. 

[p.2] Crowdsourcing interface for collecting correspondences of web pages.  
Juho Kim, Ranjitha Kumar, & Scott R. Klemmer.  
UIST 2009 Poster. 

[p.1] Automatic retargeting of web page content.  
Ranjitha Kumar, Juho Kim, & Scott R. Klemmer.  
CHI 2009 Extended Abstracts. 

A W A R D S  &  H O N O R S  

Honorable Mention Award   Apr.2014  
CHI 2014. Among the top 5% of all submissions. [c.9] 

Honorable Mention Award   Apr.2014  
CHI 2014. Among the top 5% of all submissions. [c.8] 

Notable paper award   Nov.2013  
HCOMP 2013. [c.5] 

2nd Place, Student Research Competition   May 2012  
CHI 2013, $300 award + $500 support. [p.7] 

1st Place Technical Lecture Award   Jan.2012  
The 8th Annual Young Generation Technical and Leadership Conference 

Best Talk Award Jun.2011 
Samsung Scholarship Open Talk at the 2011 Samsung Scholarship Academic Camp 
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The Samsung Scholarship 2010–2015 
Tuition and living costs covered for Ph.D. studies ($50K per year, for 5 years) 

The Samsung Scholarship 2008–2010 
Tuition and living costs covered for Master’s studies ($50K per year, for 2 years) 

Independent Study Scholarship  Oct.2007 
$1K Research grant awarded by Center for Teaching & Learning, Seoul National University  

Seoul National University Scholarship  Aug.2001–Aug.2004 
Merit-based scholarships for 6 semesters 

T E A C H I N G  &  M E N T O R I N G  

Instructor 
• User Interface Design & Implementation (MIT 6.813/6.831)       Spring 2015 

Delivering lectures, designing and facilitating in-class activities, hiring and supervising teaching assistants, 
and redesigning curriculum, problem sets, and final projects. Co-instructor: Prof. Robert C. Miller 

Teaching Assistant 
• User Interface Design & Implementation (MIT 6.813/6.831)         Spring 2012 

Mentored student teams in semester-long interface design projects. Graded research and programming 
assignments, problem sets, and quizzes. Instructor: Prof. Robert C. Miller 

Research Mentoring  
• Peter Githaiga (UROP, MIT undergraduate)           Nov.2014–Present 

Integrating LectureScape into the edX platform. Co-mentoring with Piotr Mitros at edX. 
• Nam Wook Kim (Harvard SEAS Ph.D. student),  

Eun-Young Ko, Chang Won Lee, Jonghyuk Jung (KAIST undergraduates)       Dec.2013–Present 
BudgetWiser: Crowdsourcing budgetary opinions and promoting online discussions. 

• Sarah Weir (Super UROP, MIT undergraduate)           Sep.2013–May 2014 
Applied learnersourcing to label subgoal structure from how-to videos ([c.13]). Sarah won 2nd place in Student 
Research Competition at CHI2014 & Robert M. Fano UROP Award at MIT EECS. 

• Carolyn Chang & Danny Sanchez (MIT undergraduates)             Jul.2013–Aug.2013  
Lecture video annotation tool (part of 6.mitx). 

• Megan O’Leary & Joseph Hanley (MIT undergraduates)           Jul.2013–Aug.2013  
edX student activity visualization (part of 6.mitx). 

• Michelle Johnson & Ashley Cho (MIT undergraduates)         Jul.2013–Aug.2013  
edX grade distribution visualization (part of 6.mitx). 

• Phu Nguyen (Super UROP, MIT undergraduate)        Sep.2012–May 2013  
Crowdsourcing step-by-step information from how-to videos ([c.9] and [p.6]). 

 

I N V I T E D  T A L K S  

Data-driven interaction techniques for improving navigation of educational videos 
• Boston University Image and Video Computing group seminar           Oct. 27th, 2014 
• HarvardX Research Colloquium                    Sep. 26th, 2014 

The future of video   
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• Samsung Economics Research Institute              Dec. 30th, 2013 

Video learning at scale with crowdsourcing and learnersourcing 
• UVR Lab, Graduate School of Culture Technologies, KAIST           Dec. 27th, 2013 
• Dept. of Knowledge Service Engineering, KAIST              Dec. 23rd, 2013 
• UI/UX Inventor Club, Korea                Dec. 20th, 2013 
• Korean Society of Design Science Seminar Series, Sungkyunkwan University      Dec. 19th, 2013 
• HCI Lab, Seoul National University               Dec. 17th, 2013 

Enhancing the learning experience of how-to videos 
• Graphics Group, MIT CSAIL           Apr. 10th, 2013 
• edX Learning Sciences Team           Mar. 7th, 2013 
• Computer Science Department, KAIST          Dec. 21st, 2012 
• ROSAEC Seminar Series, Seoul National University         Dec. 18th, 2012 
• Epoch Foundation @ MIT                Oct. 17th, 2012 

Online education and massive open online courses (MOOCs) 
• Open Entrepreneur Center            Dec. 27th, 2012 
• Todam: Boston Korean Students Meeting          Oct. 13th, 2012 
• Samsung Scholarship Open Talk           Jun. 26th, 2012  

Crowdsourcing: engineering collective intelligence 
• Korean Society of Design Science Seminar Series, Yonsei University       Dec. 20th, 2012 
• Department of Software, Sungkyunkwan University         Jul. 3rd, 2012 
• Young Generation Technical and Leadership, KSEA         Jan. 6th, 2012 
• Todam: Boston Korean Students Meeting           Oct. 8th, 2011 
• Samsung Scholarship Open Talk           Jun. 29th, 2011  

Creativity support tools 
• HCI Lab, Seoul National University          Jan. 4th, 2011 
• Department of Information Convergence at Seoul National University GSCST      Jan. 5th, 2011 

S E L E C T E D  P R E S S  

Forbes | 2014.08.11 
MIT Team Turns 6.9 Million Clicks Into Insights To Improve Online Education 
http://www.forbes.com/sites/peterhigh/2014/08/11/mit-team-turns-6-9-million-clicks-into-insights-to-improve-online-education/ 

eCampus News | 2014.08.05 
Learning from MOOC mistakes, one click at a time 
http://www.ecampusnews.com/top-news/mooc-learning-767/ 

TICBeat | 2014.08.02 (Spanish) 
El MIT investiga el camino hacia el aprendizaje online más eficiente 
http://www.ticbeat.com/tecnologias/mit-investiga-aprendizaje-onine-eficiente/ 

Bostinno | 2014.07.31 
MIT-Spun 'YouTube for MOOCs' is Solving a Major Problem Plaguing Online Education 
http://bostinno.streetwise.co/2014/07/31/how-do-online-learners-watch-videos-lecturescape-mits-youtube-for-moocs-516442/ 

News Peppermint | 2014.07.29 (Korean) 
온라인���������	
��������������������  교육의���������	
��������������������  성패를���������	
��������������������  가르는���������	
��������������������  요인들���������	
��������������������  
http://newspeppermint.com/2014/07/29/online_education/ 
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MIT News Office | 2014.07.28 
What 6.9 million clicks tell us about how to fix online education 
http://newsoffice.mit.edu/2014/what-69-million-clicks-tell-us-about-how-fix-online-education 

P R O F E S S I O N A L  S E R V I C E  

Program Committee – Learning at Scale 2015 
Posters Co-Chair – UIST 2015 
Conference Organizer – Webmaster (CHI 2015) 
Conference Organizer – Scheduling + communitysourcing (CHI 2013-2014, CSCW 2014-2015) 
Workshop Organizer – Connecting Collaborative & Crowd Work with Online Education (CSCW 2015)  
Workshop Organizer – CrowdCamp (HCOMP 2013-2014) 
Reviewer – CHI 2008-2015, UIST (2012 & 2014), CSCW (2008 & 2011-2015), ICWSM 2014, EDM 2014, 
MobileHCI 2014, HCOMP 2013, IWIC 2009 
Student Volunteer – CHI 2010-2012, UIST 2012, CSCW 2013, APCHI 2008 
Head of Digital Learning Subcommittee – MIT Graduate Student Council May 2013-May 2014 
Organizer – Todam interdisciplinary weekly seminar Aug. 2012-Aug.2014 
Organizer – MIT CSAIL HCI Seminar Series 2011-Present 
Organizer – BostonCHI Labs Research Consortium 2011-Present 
President – MIT EECS Korean Graduate Student Association 2012-2013 

R E F E R E N C E S  

Robert C. Miller 
Professor, Massachusetts Institute of Technology 
rcm@mit.edu   
 
Frédo Durand 
Professor, Massachusetts Institute of Technology 
fredo@mit.edu   
 
Haoqi Zhang 
Assistant Professor, Northwestern University 
hq@northwestern.edu  

Krzysztof Z. Gajos 
Associate Professor, Harvard University 
kgajos@eecs.harvard.edu   
 
Meredith Ringel Morris 
Senior Researcher, Microsoft Research 
merrie@microsoft.com  
 
Philip J. Guo 
Assistant Professor, University of Rochester 
pg@cs.rochester.edu   
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Juho	  Kim	  -‐	  Research	  Statement	  

As a human-computer interaction (HCI) researcher, I build interactive technologies powered by large-
scale data from users. With an unprecedented scale of data generated by users’ interactions with online 
platforms, there is an opportunity to leverage data to uncover rich and structured information, such as 
usage patterns, levels of engagement, preferences, and even diverse perspectives and opinions. However, 
raw interaction data is often noisy and unstructured. Furthermore, tools for collecting, interpreting, and 
acting on interaction data are rudimentary and ad hoc. As a result, data-driven discoveries rarely result in 
meaningful changes and often require extremely long cycles to directly impact the user experience. My 
research tackles this challenge by 1) extracting meaningful patterns from natural interaction traces, 2) 
eliciting specific information from users by designing microtasks that are inherently meaningful to them, 
and 3) changing the interface behavior immediately as more data becomes available. These data-driven 
methods demonstrate how interaction data can be powerful building blocks for enhancing massive-scale 
learning, planning, discussion, collaboration, and sensemaking online. 

Specifically, my research has focused on educational videos in learning at scale platforms. My primary 
approach has been learnersourcing, in which learners collectively generate novel content and 
interfaces for future learners while engaging in a meaningful learning experience themselves. Millions of 
learners today use educational videos from online platforms such as YouTube, Khan Academy, Coursera, 
or edX. I believe learners can be a qualified and motivated crowd who can help improve the content and 
interfaces. What if learners’ collective activity can help generate structured information for videos, such as 
identifying points of confusion or importance in a video, reconstructing a solution structure from a 
tutorial, or creating alternate explanations and examples? Learnersourcing can generate such structured 
information neither experts, nor computers, nor existing crowdsourcing methods can achieve at scale. My 
research demonstrates that interfaces powered by learnersourced structured information can enhance 
content navigation, create a sense of learning with others, and ultimately improve learning. 

I draw on several fields to design learnersourcing applications: crowdsourcing to collect and handle a 
large amount of learner input; social computing to promote collaborative improvement; content-based 
video analysis techniques such as computer vision and natural language processing to complement 
learner input; and learning science to inform the design of learnersourcing tasks that are pedagogically 
meaningful. I explore two types of learnersourcing: passive learnersourcing uses data generated by 
learners’ natural interaction with the learning platform, and active learnersourcing prompts learners 
to provide specific information.  

Passive	  Learnersourcing:	  Natural	  learner	  interactions	  improve	  video	  learning	  
I created a thread of research that leverages natural learning interaction data to improve the learning 
experience, specifically using thousands of learners’ second-by-second video player interaction traces 
(e.g., clicking the play button in the video player). I first conducted exploratory analyses to better 
understand the video clickstream data, and used the findings to design a set of data-driven video 
interaction techniques to directly help future learners. 

Data analysis of 39 million MOOC video clicks. 
Exploratory data analyses of four massive open online courses 
(MOOCs) on the edX platform investigated 39 million video 
events and 6.9 million watching sessions from over 120,000 
learners. Analyzing collective in-video interaction traces 
revealed video interaction patterns, one of which is interaction 
peaks, a burst of play button clicks around a point in a video 
indicating points of interest and confusion for many learners. A 
key observation was that 61% of the peaks accompany visual 
transitions in the video, e.g., a slide view to an instructor view 
(Figure 1). Extending this observation, I identified student 
activity patterns that can explain peaks, including playing from 
the beginning of a new material, returning to missed content, 

Figure	  1.	  An	  example	  interaction	  peak	  	  
near	  a	  scene	  transition	  in	  a	  lecture	  video.	  
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and replaying a brief segment [1]. A further analysis investigated how video production factors affect 
video engagement: shorter (less than six minutes long), informal (professors at a desk rather than behind 
a podium), and web-optimized (rather than in-class lecture captures) videos lead to higher engagement 
[2]. These analyses have implications for video authoring, editing, and interface design, and provide a 
richer understanding of video learning on MOOCs. 

Data-driven video interface that evolves over time. I took a 
step further and explored ways to directly improve the video 
watching experience with interaction data. LectureScape  (Figure 
2) [3] is an enhanced video player for educational content online, 
powered by data on learners’ collective video watching behavior. 
LectureScape dynamically adapts to thousands of learners’ 
collective video watching patterns to make it easier to rewatch, 
skim, search, and review. By analyzing the viewing data as well as 
the content itself, LectureScape introduces a set of interaction 
techniques that augment existing video interface widgets: a 2D 
video timeline with an embedded visualization of collective 
navigation traces; dynamic and non-linear timeline scrubbing; 
data-enhanced transcript search and keyword summary; automatic 
display of relevant still frames next to the video; and a visual 

summary representing points with high learner activity. Participants in a user study commented that “it 
feels like watching with other students” and it was “more classroom-y” to watch videos with LectureScape, 
which shows how large-scale interaction data can support social and interactive video learning. This 
project has been published at UIST 2014 [3], a top-tier venue in HCI, and was featured by over 30 media 
outlets, including Forbes, eCampusNews, BostonInno, and MIT News Office. I am currently collaborating 
with edX to integrate the player into the edX platform, and will soon release it as open source. 

Adapting interaction behavior to user interest. LectureScape demonstrates an example of how 
signals of user interest can be used to dynamically improve the user interface. I extended this idea to a 
scrolling technique for touchscreen devices. The content-aware kinetic scrolling (CAKS) technique 
[4] constructs a degree of interest model from web page content (e.g., number of likes, shares, or 
recommendations on social media) to dynamically modify the scrolling behavior. CAKS applies additional 
friction around points of high interest within the page. This draws user’s attention to interesting content 
without cluttering the limited visual space. 

Active	  Learnersourcing:	  Learner	  prompts	  contribute	  to	  new	  learning	  materials	  
How-to videos contain worked examples and step-by-step instructions for how to complete a task (e.g., 
math, cooking, programming, graphic design). My formative study showed the navigational, self-efficacy, 
and performance benefits of having step-by-step information about the solution. Education research also 
advocates for exposing the solution structure and shows the learning benefits of having labels for groups 
of steps (subgoals).  However, such information is often not available for most existing how-to video 
online. I have created scalable methods for extracting steps and subgoals from existing videos, as well as 
an alternative video player where the solution structure is displayed alongside the video. These techniques 
actively prompt learners to contribute structured information in an in-video quiz format. 

Extracting step-by-step information 
from how-to videos. Based on the findings 
of the study, I built ToolScape, a video 
player that displays step descriptions and 
intermediate result thumbnails in the video 
timeline (Figure 3) [5]. To enable non-experts 
to successfully extract step-by-step structure 

from existing how-to videos at scale, I designed a three-stage crowdsourcing workflow. It applies temporal 
clustering, text processing, and visual analysis algorithms to merge crowd output. The workflow 
successfully annotated 75 cooking, makeup, and Photoshop videos on YouTube of varying styles, with a 
quality comparable to trained annotators across all domains. 

Figure	  2.	  LectureScape:	  lecture	  video	  
player	  powered	  by	  interaction	  data.	  

Figure	  3.	  ToolScape:	  Step-‐aware	  tutorial	  video	  player.	  
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Learnersourcing section summaries from how-to videos. Taking a step further, we asked if 
learners, both an intrinsically motivated and uncompensated crowd, can generate summaries of 
individual steps at scale. This research question resulted in a learnersourcing workflow that periodically 
prompts learners who are watching the video to answer one of the pre-populated questions, such as “what 
was the overall goal of the video section you just watched?” (Figure 4) [6]. The system determines which 
question to display depending on how much information has already been gathered for that section in the 
video, and the questions are designed to engage learners to reflect on the content. Future learners can 
navigate the video with the up-to-date solution summary. We deployed Crowdy, a live website with the 
learnersourcing workflow implemented on a set of introductory web programming videos. The 25-day 
deployment attracted more than 1,200 learners who contributed hundreds of subgoal labels and votes. A 
majority of learner-generated subgoals were comparable in quality to expert-generated ones, and learners 
commented that the system helped them grasp the material. 

When combined, the two methods (ToolScape for individual steps and Crowdy for subgoal labels) can 
fully extract a hierarchical solution structure from existing how-to videos. I am currently conducting a 
controlled study designed to evaluate the motivational and learning benefits of participating in our 
learnersourcing workflow and interacting with a solution structure generated by learners. 

Designing	  systems	  for	  communities	  and	  crowds	  that	  care	  
I have also explored other domains beyond education, in which a community of users perform inherently 
meaningful tasks while collaborating in the sensemaking and content generation process. 

Community-driven conference scheduling. The Cobi project 
engages an entire academic community in planning a large-scale 
conference. Cobi elicits community members' preferences and 
constraints, and provides a scheduling tool that empowers 
organizers to take informed actions toward improving the schedule 
[7] (Figure 5). Community members’ self-motivated interactions 
and inputs guide the conflict resolution and schedule 
improvements. Because each group within a community has 
different information needs, motivations, and interests in the 
schedule, we designed custom applications for different groups: 
Frenzy [8] for program committee members to group and label 
papers sharing a common theme; authorsourcing [7, 9] for paper 
authors to indicate papers relevant to theirs; and Confer [10] for 
attendees to bookmark papers of interest. Cobi has scheduled CHI 
and CSCW, two of the largest conferences in HCI, since 2013. It has 
successfully resolved conflicts and incorporated preferences in the 
schedule, with input from hundreds of committee members, and 
thousands of authors and attendees. I was the main designer and 
developer for the authorsourcing and scheduling applications [7], 
and helped the design of Frenzy [8] and Confer [10]. 

Budgetary discussion support for taxpayers. The 
extensiveness and complexity of a government budget hinder 
taxpayers from understanding budgetary information and 
participating in deliberation. We designed interactive and 

Figure	  4.	  Crowdy:	  Learnersourcing	  workflow	  for	  summarizing	  steps	  in	  a	  how-‐to	  video. 

Figure	  5.	  Cobi:	  Conference	  scheduling	  tool	  
powered	  by	  community	  input.	  

Figure	  6.	  BudgetMap:	  Visual	  exploration	  
of	  government	  budgets	  driven	  by	  social	  

issues	  tagged	  by	  taxpayers. 
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collaborative web platforms in which users can contribute to the overall “pulse” of the public’s 
understanding and sentiment about budgetary issues. Factful [11] is an annotative article reading 
application that enhances the article with fact-checking support and contextual budgetary information. 
Users’ fact-checking requests and results are accumulated to help future users engage in fact-oriented 
discussions. BudgetMap (Figure 6) [12] allows users to navigate the government budget with social 
issues of their interest. Users can make links between government programs and social issues by tagging. 
In our 5-day live deployment, more than 1,600 users visited the site and made 697 links between social 
issues and budget programs. The government of South Chungcheong Province in South Korea has decided 
to officially adopt BudgetMap. 

Future	  Research	  Agenda	  
My research has introduced computational mechanisms in which user's lightweight contributions serve a 
bigger cause: learners improve content and interfaces for future learners, paper authors and attendees 
help with conference scheduling, and taxpayers issue fact checking requests and link social issues to 
budget items. My research will continue to lower the bar on individuals’ participation and impact within a 
community, by engaging them in activities meaningful to both themselves and the community. 

Innovative learnersourcing applications. I plan to push 
forward the boundaries of learnersourcing by broadening the 
application scope domain. I have already started exploring with  
RIMES (Figure 7), a system for easily authoring, recording, and 
reviewing interactive multimedia exercises embedded in lecture 
videos [13]. With RIMES, teachers can prompt learners to record 
their responses to an activity using video, audio, and inking while 
watching lecture videos. Teachers can then review and interact with 
all the learners’ responses in an aggregated gallery. I plan to extend 
RIMES to learnersource alternative self-explanations within a video, 
which can enable multiple learning paths and personalization for 
learners. A technical challenge will be in interpreting and labeling 
multimedia inputs from learners. Another avenue for future research 

is supporting diverse problem domains: a programming environment that learnersources code snippets 
and documentations; a writing tool that learnersources alternate expressions and phrases for inspiration 
and learning; and a graphical design tool that learnersources visual assets others can build on top of.  

Learning platforms of the future. While existing online learning platforms have provided access to 
more learners, the learning experience is still limited to passively watching and answering canned 
questions. I envision educational technologies that truly scale: a course that is created, organized, and 
taught entirely by learners. Learners will actively engage in 1) creating various artifacts including quizzes, 
explanations, and examples, 2) providing feedback and iterating on the artifacts, and 3) labeling the 
artifacts with metadata for better search and organization. With a learnersourced course that builds itself, 
learners are at the center of both the instructional design and learning experience. 

Science of learning at scale. Despite the rapid growth, we do not yet have good answers to whether, 
what, how, and why people learn in massive learning platforms. The field desperately needs to develop 
theories, instructional guidelines, and design principles unique to learning at scale settings. I am 
interested in building formal and data-driven frameworks for conducting controlled experiments, 
plugging in modularized content, and immediately modifying the learning interface. The frameworks will 
spur the design of in vivo experiments, new pedagogical formats, and tools for learning, which in turn can 
advance the emerging science of learning at scale. 

Sociotechnical application design. My research program has uniquely applied insights from 
crowdsourcing (microtasks and workflow design) to lower the barrier to participation for individuals 
within a community. I believe this framework has potential for broader societal impact. I plan to design 
novel coordination and incentive mechanisms for broader domains including civic engagement, health 
care, and accessibility. I will investigate generalizable design principles and computational methods 
applicable across multiple domains. Furthermore, I am interested in capturing community interactions 

Figure	  7.	  RIMES:	  Interactive	  
multimedia	  exercises	  in	  lecture	  videos.	  
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beyond clickstream and answers to given prompts. How can we capture discussion, collaboration, 
decision making, and creative processes by individuals and groups at scale? I will continue to build 
systems that are used by real people in answering the proposed research questions. 

Collaboration. In graduate school, I have been fortunate to work with over 60 collaborators from over 
20 different institutions, spanning a variety of domains including machine learning, natural language 
processing, computer vision, artificial intelligence, systems, communications, education, psychology, and 
economics. I will continue to aim for more ambitious research goals and impact with my collaborators.  
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Juho	  Kim	  -‐	  Teaching	  Statement	  

My goal in teaching and mentoring is to create an interactive and constructive learning environment for 
students. I have found it rewarding to see my students learn and grow, and realized that a learning 
environment makes a big difference in students’ experiences. A good environment is more than well-
delivered lectures and well-designed curricula: it’s a culture. I will carefully build a culture that increases 
interactivity, promotes learning by doing, and provides feedback. Interactivity encourages higher 
comprehension and reflection, and helps students have more control in their learning. I care about 
increasing student-teacher, student-student, and student-content interactivity. Learning by doing 
promotes tinkering with physical and digital artifacts, provides an opportunity to turn abstract concepts 
into concrete examples, and naturally affords an iterative design process where students experience 
failing fast, often, and softly. Immediate and constructive feedback helps students discover missing links 
in their knowledge and adjust their understanding. I focus on creating an open environment where self- 
and peer-feedback is encouraged.  

My teaching and mentoring experiences, as well as my research on online education, have helped prepare 
me to cultivate the supportive learning environment and become a good teacher and mentor. I would like 
to teach, advise, explore novel educational technologies, and provide community support for the next 
generation of builders and designers of interactive technologies. 

Teaching	  
I will be a co-instructor for MIT’s User Interface Design course (6.813/6.831) in Spring 2015, in which we 
are expecting around 300 undergraduate and graduate students. It is an intro-level Human-Computer 
Interaction (HCI) course that provides backgrounds in HCI methodology, design process, and hands-on 
user interface design and implementation experiences with a semester-long group project. It is a rare 
opportunity as a graduate student at MIT to be an official instructor for a regular course. My 
responsibilities include delivering lectures, designing and facilitating in-class activities, hiring and 
supervising teaching assistants, and redesigning problem sets. We are implementing a flipped classroom 
model in this course, where we ask students to read the course material for the upcoming class, take a 
short quiz in the beginning of the class, participate in various in-class activities, and attend weekly studio 
sections for peer feedback on group projects. It will be a great opportunity for me to gain an experience in 
planning and running a course before starting as faculty, and to practice various pedagogically effective 
approaches I believe in. 

I also served as a teaching assistant for the same course in Spring 2012, for which I mentored 11 student 
project groups, facilitated multiple rounds of design critique sessions, and graded problem sets and 
project milestones. During four years in my undergraduate, I have worked as a private tutor in math, 
computer programming, English, and vocal training. This variety of teaching experiences helped me not 
only realize my passion in teaching, but also think about how to bring the benefits of one-to-one tutoring 
into classrooms with hundreds of students and even online classes with hundreds of thousands of 
students. I aim to apply active learning methods to my teaching, such as in-class discussions, small group 
tasks, frequent and targeted feedback, and peer instruction, while reducing one-way lecturing as much as 
possible. I also familiarize myself with novel education technologies and online learning support systems, 
which may enable more interactive experiences within and outside of the classroom.  

Mentoring	  
I have been fortunate to mentor talented and motivated students in various research projects. I mentored 
nine MIT undergraduates in learning-related HCI projects, two of whom I mentored for a full academic 
year with weekly in-person meetings. Sarah Weir designed a learnersourcing workflow for generating 
summary labels for how-to videos, which resulted in a full paper at CSCW 2015, a premier venue in HCI, 
with Sarah as the first author. She is also a 2nd place winner in student research competition at CHI 2014, 
a premier venue in HCI, and received a Robert M. Fano UROP (Undergraduate Research Opportunities 
Program) award in the EECS department at MIT. Phu Nguyen worked on a crowdsourcing workflow for 
extracting step-by-step information from how-to videos, which resulted in a full paper at CHI 2014 with 
Phu as the second author, and a poster at CHI 2013 with Phu as the first author. I also mentored four 
students at Harvard and KAIST in a multi-institutional research project, BudgetWiser, which attempts to 
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engage the public in a budgetary discussion online. I mentored the students in creating two live web 
interfaces and submitting two full papers to CHI 2015. Such diverse and successful mentoring experiences 
were highly rewarding, and I will continue to refine my mentoring approach to help my students grow as 
independent researchers. 

Technologies	  for	  Teaching	  and	  Learning	  
I have a strong interest in improving the teaching and learning experience with technology, which also 
aligns with my own research domain and expertise. I am interested in designing and building interactive 
exercises, systems for supporting active learning, and reusable infrastructure for courses. An example is 
RIMES, a system I built for enabling instructors to insert interactive exercises into a lecture video. 
Students can record their responses with drawing, audio, and video. Instructors can then review the 
submissions using the gallery interface, provide personalized feedback, and share example answers with 
the entire class. I plan to actively create and employ such technologies to enhance the learning experience 
for my students. 

Community	  
Learning comes from not just sitting in classrooms but also from interacting with peers and colleagues in 
a community. I have taken a leadership role in expanding the HCI community at MIT and in the Boston 
area. I have co-organized the HCI seminar at MIT CSAIL [http://groups.csail.mit.edu/uid/seminar.shtml] 
since 2011, where we invited speakers from diverse institutions and research backgrounds. The 
attendance has been not just from MIT CSAIL, but also from other programs at MIT, as well as local 
schools and industry labs. I have also served as a co-organizer for BostonCHILabs 
[http://bostonchilabs.org/] since 2011, an alliance of academic and industry HCI researchers in the Boston 
area, where I organized various academic and social events for the community. I also co-organized 
Todam, a weekly interdisciplinary seminar series for Korean students in the Boston area for two years. As 
faculty, I will continue my effort in building and growing an academic community within the institution 
and local area. 

Example	  Courses	  
Having mastered the skills to provide a solid conceptual ground in both computer science and HCI, I am 
qualified and excited to teach courses in the following areas, as well as a broad range of intro-level CS 
courses: 

● Human-Computer Interaction: Possible courses include introduction to HCI, interaction design 
studio, and graduate-level research topics in HCI. In all these courses I plan to incorporate a project 
component, where students follow the design process to define a problem, discover user needs, build 
multiple prototypes and iterate on them, evaluate with end users, and present the demo and findings. 

● Programming / Web Applications: Possible courses include introduction to programming, software 
studio, and web applications. Topics would include the basics of programming, algorithms, data 
structures, and software engineering, as well as modern web development technologies and frameworks. 
All these courses will be project-based, with an emphasis on modularity, reusability, documentation, 
collaboration, and open source. 

● Crowdsourcing / Human Computation / Social Computing: Possible courses include graduate-
level research topics in crowdsourcing, human computation, and social computing. The courses will 
include a survey of key topics and research methods, with an emphasis on paper critiques and peer 
discussions. 

● Learning at Scale: This graduate-level course will include a survey of key topics in this emerging area of 
research. It will examine existing massive open online courses (MOOCs), intelligent tutoring systems, and 
educational technologies, and encourage students to explore opportunities and limitations of technologies 
specifically designed for learning at scale. It will cover pedagogical theories, computational technologies, 
social learning models, and policy and legal issues around learning at scale. 
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ABSTRACT
Millions of learners today use how-to videos to master new
skills in a variety of domains. But browsing such videos is
often tedious and inefficient because video player interfaces
are not optimized for the unique step-by-step structure of such
videos. This research aims to improve the learning experience
of existing how-to videos with step-by-step annotations.

We first performed a formative study to verify that annota-
tions are actually useful to learners. We created ToolScape,
an interactive video player that displays step descriptions and
intermediate result thumbnails in the video timeline. Learners
in our study performed better and gained more self-efficacy
using ToolScape versus a traditional video player.

To add the needed step annotations to existing how-to videos
at scale, we introduce a novel crowdsourcing workflow. It ex-
tracts step-by-step structure from an existing video, including
step times, descriptions, and before and after images. We in-
troduce the Find-Verify-Expand design pattern for temporal
and visual annotation, which applies clustering, text process-
ing, and visual analysis algorithms to merge crowd output.
The workflow does not rely on domain-specific customiza-
tion, works on top of existing videos, and recruits untrained
crowd workers. We evaluated the workflow with Mechanical
Turk, using 75 cooking, makeup, and Photoshop videos on
YouTube. Results show that our workflow can extract steps
with a quality comparable to that of trained annotators across
all three domains with 77% precision and 81% recall.

Author Keywords
Crowdsourcing; how-to videos; video annotation.

ACM Classification Keywords
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INTRODUCTION
How-to videos on the web have enabled millions of learn-
ers to acquire new skills in procedural tasks such as fold-
ing origami, cooking, applying makeup, and using computer
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Figure 1. Our crowdsourcing workflow extracts step-by-step informa-
tion from a how-to video with their descriptions and before/after images.
It features the Find-Verify-Expand design pattern, time-based cluster-
ing, and text/visual analysis techniques. Extracted step information can
be used to help learners navigate how-to videos with higher interactivity.

software. These videos have a unique step-by-step structure,
which encourages learners to sequentially process and per-
form steps in the procedure [29]. While most text- and image-
based tutorials (e.g., webpages) are naturally segmented into
distinct steps, how-to video tutorials often contain a single
continuous stream of demonstration. Because comprehen-
sive and accurate step-by-step information about the proce-
dure is often missing, accessing specific parts within a video
becomes frustrating for learners. Prior research shows that
higher interactivity with the instructional content aids learn-
ing [13, 28], and that the completeness and detail of step-by-
step instructions are integral to task performance [11].

To better understand the role of step-by-step information in
how-to videos, we ran a formative study where learners per-
formed graphical design tasks with how-to videos. For this
study, we designed ToolScape, an interactive how-to video
player that adds step descriptions and intermediate result
thumbnails to the video timeline. Learners using ToolScape
showed a higher gain in self-efficacy and rated the quality
of their own work higher, as compared to those using an or-
dinary video player. Moreover, external judges gave higher
ratings to the designs produced by learners using ToolScape.



Providing such navigation support for how-to videos requires
extracting step-by-step information from them. One solution
is to ask instructors to include this information at tutorial gen-
eration time, but this adds overhead for instructors and does
not solve the problem for existing videos. Another approach
uses automatic methods such as computer vision. Previous re-
search [3, 26] has shown success in limited domains with ex-
tensive domain-specific customization. When working with
“videos in the wild”, however, vision-based algorithms often
suffer from low-resolution frames and a lack of training data.
A scalable solution applicable beyond limited task domains
and presentation formats is not yet available.

To address the issues of high cost or limited scalability with
existing methods, we introduce a crowdsourcing workflow
for annotating how-to videos, which includes the Find-Verify-
Expand design pattern shown in Figure 1. It collects step-
by-step information from a how-to video in three stages: (1)
find candidate steps with timestamps and text descriptions,
(2) verify time and description for all steps, and (3) expand a
verified step with before and after images. The workflow does
not rely on domain-specific knowledge, works on top of exist-
ing videos, and recruits untrained, non-expert crowd workers.
For quality control, the workflow uses time-based clustering,
text processing, and visual analysis to merge results and deal
with noisy and diverse output from crowd workers.

To validate the workflow with existing how-to videos, we
asked crowd workers on Mechanical Turk to annotate 75
YouTube how-to videos spanning three domains: cooking,
makeup, and graphics editing software. Results show that
the crowd workflow can extract steps with 77% precision and
81% recall relative to trained annotators. Successfully ex-
tracted steps were on average 2.7 seconds away from ground
truth steps, and external evaluators found 60% of before and
after images to be accurately representing steps.

The contributions of this paper are as follows:

• A how-to video player interface and experimental results
showing that increased interactivity in a video player im-
proves learners’ task performance and self-efficacy.

• A domain-independent crowd video annotation method
and the Find-Verify-Expand design pattern for extracting
step-by-step task information from existing how-to videos.

• A novel combination of time-based clustering, text pro-
cessing, and visual analysis algorithms for merging crowd
output consisting of time points, text labels, and images.

• Experimental results that validate the workflow, which
fully extracted steps from 75 readily available videos on
the web across three distinct domains with a quality com-
parable to that of trained annotators.

RELATED WORK
We review related work in crowdsourcing workflows, video
annotation, and tutorials.

Crowdsourcing Workflows
Research on multi-stage crowd workflows inspired the design
of our method. Soylent [5] has shown that splitting tasks into

the Find-Fix-Verify stages improves the quality and accuracy
of crowd workers’ results. Other multi-stage crowdsourcing
workflows were designed for nutrition information retrieval
from food photos [24], activity recognition from streaming
videos [21], and search engine answer generation [6]. These
applications demonstrated that crowdsourcing can yield re-
sults comparable to those of experts at lower cost. Our work
contributes to this line of research a novel domain, video an-
notation, by extending [18] and [23].

Video Annotation Methods
This work focuses on providing a scalable and generalizable
video annotation solution without relying on trained annota-
tors, experts, or video authors. Video annotation tools capture
moments of interest and add labels to them. Many existing
tools are designed for dedicated annotators or experts in lim-
ited context. Domain-specific plug-ins [8, 14, 15] automati-
cally capture task information, but require direct access to in-
ternal application context (e.g., Photoshop plug-ins accessing
operation history). But plug-ins do not exist for most proce-
dural tasks outside of software applications (e.g., makeup),
which limits the applicability of this method.

Crowdsourcing video annotation has recently gained interest
as a cost-effective method without relying on experts while
keeping humans in the loop. Existing systems were designed
mostly to collect training data for object recognition [31], mo-
tion tracking [30], or behavior detection [25]. Rather than use
crowdsourcing to support qualitative researchers, this work
supports end users learning from videos. Adrenaline [4] uses
crowdsourcing to find the best frame from a video in near
real-time. While [4] and our work both aim to detect a time-
specific event from a video stream, our work additionally la-
bels the event and expands to capture surrounding context.

Interactive Tutorials
In designing user interfaces for instructional videos, higher
interactivity with the content has been shown to aid learn-
ing [13, 28]. Tversky et al. [28] state that “stopping, starting
and replaying an animation can allow reinspection”, which
in turn can mitigate challenges in perception and comprehen-
sion, and further facilitate learning. Semantic indices and ran-
dom access have been shown to be valuable in video naviga-
tion [32, 22], and the lack of interactivity has been deemed a
major problem with instructional videos [16]. This work in-
troduces a user interface for giving learners more interactivity
in video navigation, and a crowdsourcing method for acquir-
ing metadata handles to create such an interface at scale.

Recent systems create interactive tutorials by either automat-
ically generating them by demonstration [8, 14], connecting
to examples [26], or enhancing the tutorial format with an-
notated information [8, 9, 18, 20]. Our crowdsourcing work-
flow can provide annotations required to create these inter-
faces and further enable new ways to learn from tutorials.

EFFICACY AND CHALLENGES OF VIDEO ANNOTATIONS
To motivate the design of our crowdsourcing workflow for
how-to video annotations, we first performed a formative
study to (1) verify that annotations are actually useful to



Figure 2. Progress in many how-to videos is visually trackable, as shown
in screenshots from this Photoshop how-to video. Adding step annota-
tions to videos enables learners to quickly scan through the procedure.

Figure 3. How-to videos often contain a series of task steps with visually
distinct before and after states. Here the author applied the “Gradient
map” tool in Photoshop to desaturate the image colors.

learners, and (2) reveal the challenges of manually annotat-
ing videos and show the need for a more scalable technique.

Annotations on How-To Videos
How-to videos often have a well-defined step-by-step struc-
ture [15]. A step refers to a low-level action in performing a
procedural task. Literature on procedural tasks suggests that
step-by-step instructions encourage learners to sequentially
process and perform steps in the workflow [29] and improve
task performance [11]. Annotations can make such structure
more explicit. In this paper, we define annotation as the pro-
cess of adding step-by-step information to a how-to video.
In determining which information to annotate, we note two
properties of procedural tasks. First, for many domains, task
states are visually distinct in nature, so progress can be visu-
ally tracked by browsing through a video (Figure 2). Exam-
ples include food in cooking videos, a model’s face in makeup
videos, and an image being edited in Photoshop videos. Sec-
ond, how-to videos contain a sequence of discrete steps that
each advance the state of the task (Figure 3). Our annotation
method uses these two properties to accurately capture a se-
quence of steps, extracting timestamps, textual descriptions,
and before and after images for each step.

We manually created a corpus of annotations for 75 how-to
videos in three procedural task domains: cooking, applying
makeup, and using Photoshop. We used this corpus to create
our interface in the formative study, and ground truth data for
evaluating our crowdsourcing workflow. We collected videos
from YouTube’s top search results for “[domain] [task name]”
(e.g., “cooking samosa”, “Photoshop motion blur”).

Annotation-Aware Video Player: ToolScape
To display step annotations, we created a prototype video
player named ToolScape. ToolScape augments an ordinary
web-based video player with a rich timeline containing links
to each annotated step and its respective before and after
thumbnail images (Figure 4). ToolScape is a Javascript
library that manages a timestamped list of steps and be-
fore/after images, which can connect to any embedded video
player with a “play from this time point” Javascript API call.

In the timeline, the top and bottom streams represent anno-
tated steps and thumbnail images from the video, respectively
(Figure 4(a), (c)). Clicking on a step or image moves the

Figure 4. ToolScape augments a web-based video player with an interac-
tive timeline. Annotations are shown above the timeline (a), screenshots
of intermediate states are shown below the timeline (c), and the gray re-
gions at both ends (b) show “dead times” with no meaningful progress
(e.g., waiting for Photoshop to launch).

video player’s slider to 5 seconds before the moment it oc-
curred. The 5-second buffer, determined from pilot testing,
helps learners catch up with the context preceding the indi-
cated moment. Finally, ToolScape supports annotations of
“dead times” at the beginning and end of videos (Figure 4(b)),
which often contain introductory or concluding remarks. Pi-
lot user observations showed that learners often skip to the
main part of the tutorial. In our manually annotated video
corpus, on average, 13.7% of time at the beginning and 9.9%
at the end were “dead times” with no task progress.

Formative Study Design
To assess the effects of step annotations, we ran a formative
study on novice Photoshop learners watching how-to videos
on image manipulation tasks. We compared the experiences
of learners using ToolScape and a baseline video player with-
out the interactive timeline. We hypothesized that interacting
with step annotations provided by ToolScape improves both
task performance and learner satisfaction. Specifically:

H1 Learners complete design tasks with a higher self-efficacy
gain when watching how-to videos with ToolScape.

H2 Learners’ self-rating of the quality of their work is higher
when watching with ToolScape.

H3 Learners’ designs when watching with ToolScape are
rated higher by external judges.

H4 Learners show higher satisfaction with ToolScape.

H5 Learners perceive design tasks to be easier when watching
with ToolScape.

In addition to external ratings (H3), our measures of success
include self-efficacy (H1) and self-rating (H2). In the context
of how-to videos, these measures are more significant than



Figure 5. These task instructions are shown before the participant starts
working on their image manipulation task. It includes a description of
the effect to be implemented and a before-and-after example image pair.

just user preference. Educational psychology research shows
that self-efficacy, or confidence in application of skills, is an
effective predictor of motivation and learning [2, 33]. Positive
self-rating has also been shown to accurately predict learning
gains [27]. Finally, we chose not to count errors made in
repeating tutorial steps as in [8], because our goal was to help
users explore and learn new skills in open-ended design tasks.

Participants: We recruited twelve participants through uni-
versity mailing lists and online community postings. Their
mean age was 25.2 (σ = 3.2), with 8 males and 4 females.
Most rated themselves as novice Photoshop users, but all had
at least some experience with Photoshop. They received $30
for up to two hours of participation, on either a Mac or PC.

Tasks and Procedures: Our study had 2 x 2 conditions: two
tasks each using ToolScape and baseline video players. We
used a within-subject design with interface, task, and order
counterbalanced. Each participant performed two image ma-
nipulation tasks in Photoshop: applying retro effect and trans-
forming a photo to look like a sketch. In both interface con-
ditions, we provided participants with the same set of how-to
videos; the interface was the only difference. In addition, we
disallowed searching for other web tutorials to ensure that any
effect found in the study comes from the interaction method,
not the content.

After a tutorial task covering all features of the video
player interface, we asked participants self-efficacy questions
adapted from Dow et al. [10], whose study also measured
participants’ self-efficacy changes in a design task. The ques-
tions asked: On a scale of 1 (not confident at all) to 7 (very
confident), how confident are you with. . .

• solving graphic design problems?
• understanding graphic design problems?
• applying design skills in practice?
• incorporating skills from video tutorials in your design?

Next, participants attempted two 20-minute image manipula-
tion tasks in Photoshop, with instructions shown in Figure 5.

Participants could freely browse and watch the 10 how-to
videos we provided (with annotations in the ToolScape con-
dition). After each task, we asked questions on task difficulty,
self-rating, and interface satisfaction. We also asked the self-
efficacy questions again to observe any difference, followed
by a 15-minute open-ended interview.

Finally, we asked four external judges to evaluate the quality
of all transformed images by ranking them, blind to user and
condition. They ranked the images from best to worst, based
on how well each participant accomplished the given task.

Formative Study Results
H1 (higher self-efficacy for ToolScape) is supported by our
study. For the four self-efficacy questions, we take the mean
of the 7-point Likert scale ratings as the self-efficacy score.
The participants’ mean initial score was 3.8; with the baseline
video player, the score after the task was 3.9 (+0.1) whereas
with ToolScape the score was 5.2 (+1.4), which meant that
learners felt more confident in their graphical design skills
after completing tasks with ToolScape. (For H1, H2, and H4,
differences between interfaces were significant at p<0.05 us-
ing a Mann-Whitney U test.)

H2 (higher self-rating for ToolScape) is supported. Par-
ticipants rated their own work quality higher when using
ToolScape (mean rating of 5.3) versus baseline (mean of 3.5).

H3 (higher external judge rating for ToolScape) is supported.
The overall ranking was computed by taking the mean of
the four judges’ ranks. The mean rankings (lower is better)
for output images in the ToolScape and Baseline conditions
were 5.7 and 7.3, respectively. A Wilcoxon Signed-rank test
indicates a significant effect of interface (W=317, Z=-2.79,
p<0.01, r=0.29). Furthermore, nine of the twelve participants
produced higher-rated images with ToolScape. The ranking
method yielded high inter-rater reliability (Krippendorff’s al-
pha=0.753) for ordinal data.

H4 (higher satisfaction with ToolScape) is supported. Mean
ratings for ToolScape and Baseline were 6.1 and 4.5, respec-
tively.

H5 (easier task difficulty perception for ToolScape) is not
supported: The mean ratings for ToolScape and Baseline
were 4.0 and 3.7, respectively. Combined with H2 and H3,
this might indicate that participants did not find the tasks eas-
ier yet still produced better designs with greater confidence.

In conclusion, ToolScape had a significant effect on learn-
ers’ belief in their graphical design skills and output quality.
They also produced better designs as rated by external judges.
Note that participants were watching the same video content
in both conditions. Thus, the video annotation browsing in-
terface affected design outcomes. Participants especially en-
joyed being able to freely navigate between steps within a
video by clicking on annotations.

Lessons for Video Browsing Interfaces
The features of ToolScape that provided higher interactivity
and non-sequential access were highly rated and frequently
used. In participants’ responses to the 7-point Likert scale



questions on the usability of interface features, the time-
marked image thumbnails (6.4) and step links (6.3) were
among the highest rated, as well as the graying out of “dead
times” with no workflow progress (6.5). Participants noted,
“It was also easier to go back to parts I missed.”, “I know
what to expect to get to the final result.”, and “It is great for
skipping straight to relevant portions of the tutorial.”

All participants frequently used the ability to click on time-
line links to navigate directly to specific images and steps.
They clicked the interactive timeline links 8.9 times on av-
erage (σ = 6.7) in a single task. We also analyzed the
tracking log, which records an event when the user clicks
on an interactive link or a pause button, or drags the play-
head to another position. The learners watched videos less
linearly with ToolScape: The ToolScape condition recorded
150 such events, versus only 96 in the Baseline condition. In
ToolScape, 107 out of 150 events were interactive link clicks
and 43 were pause button clicks or direct scrubbing on the
player. These findings indicate that interactive links largely
replaced the need for pause or scrubbing, and encouraged the
stepwise navigation of the procedure.

Lessons for How-To Video Annotation
The study results suggest that annotated step information
makes how-to videos much more effective for learners. How-
ever, the bottleneck is in obtaining the annotations. Here are
some lessons from our experience annotating videos by hand:

• Extracting step information from how-to videos involves
detecting timing, generating a natural language description
of a step, and capturing before and after states.

• It often requires multi-pass watching, which adds to task
complexity. Before knowing what each step is, the annota-
tor cannot extract before and after thumbnail images. This
experience supports a design choice to split the work into
multiple stages so that in each stage, the annotator’s atten-
tion is focused on a single, simple task.

• Hand annotation is time-consuming. Roughly three times
the original video length was required by trained annotators
to annotate each how-to video.

• Timing detection is difficult. Sometimes there is an interval
between when a step is spoken and demonstrated. Also, if
the goal is to find a starting time of a step, the annotator has
to watch, verify, and scroll back to mark as a valid step.

These lessons informed the design of our crowdsourced how-
to video annotation method, which we now present.

CROWDSOURCING WORKFLOW: FIND-VERIFY-EXPAND
Using lessons from our formative study, we designed a three-
stage crowdsourcing workflow for annotating how-to videos
with procedural steps, timings, textual descriptions, and be-
fore and after thumbnail images. This workflow works with
any how-to video regardless of its domain, instructional style,
and presentation. It also collects annotations with untrained
crowd workers (e.g., workers on Mechanical Turk).

Figure 6. In the Find stage, the crowd worker adds new steps to the
timeline by clicking on the “New Instruction” button.

Figure 7. Upon clicking on the “New Instruction” button, a popup win-
dow asks the worker to describe what the step is about in free-form text.

Inspired by crowd design patterns that segment a bigger task
into smaller micro-tasks [5], our workflow decomposes the
annotation task into three stages and each video into shorter
segments. This design addresses the task complexity and
multi-pass overhead problems of manual annotation.

We developed a generalizable crowd workflow pattern called
Find-Verify-Expand (Figure 1) for detecting temporal and
visual state changes in videos, such as steps in a how-to video,
highlights from a sports game, or suspicious incidents from a
surveillance video. The unique Expand stage captures sur-
rounding context and causal relationships (e.g., before/after
images for a step in a how-to video) by expanding on the de-
tected event (e.g., a step in a how-to video). To better handle
crowd output coming from timing detection and image selec-
tion, we apply clustering algorithms and text and visual anal-
ysis techniques to intelligently merge results from workers.

Stage 1: FIND candidate steps
This crowd task collects timestamps and text descriptions for
possible steps from a video segment. While watching the
video, the worker adds a step by clicking on the “New In-
struction” button every time the instructor demonstrates a step
(Figure 6). Each time the worker clicks on the button, the task
prompts the worker to describe the step in free-form text (Fig-
ure 7). The same segment is assigned to three workers, whose
results get merged to create candidate steps.

Pre-processing: A video is segmented into one-minute
chunks. We learned from pilot runs that longer video seg-
ments lead to lower annotation accuracy toward the end and
slower responses on Mechanical Turk. However, a drawback
in using segmented video is the possibility of missing steps



Figure 8. Our clustering algorithm groups adjacent time points into a
candidate step. It further adds a potential cluster as a candidate, which
might turn out to be a proper step once checked in the Verify stage. This
inclusive strategy mitigates the effect of clustering errors.

near segment borders. We address this issue by including a
five-second overlap between segments, and attaching the final
segment to the prior one if it is shorter than 30 seconds.

Task Design: For quality control, the task first ensures that
the user has audio by giving a test that asks the worker to type
in a word spoken from an audio file. Our pilot runs showed
that labeling accuracy drops significantly when the worker
does not listen to audio. Secondly, we disable the Submit but-
ton until the video playhead reaches the end to ensure that the
worker watches the entire segment. Finally, when the worker
clicks on the “New Instruction” button, the video pauses and
a dialog box pops up to ask what the step was. Our initial
version simply added a tick on the timeline and continued
playing without pausing or asking for a label. But this re-
sulted in workers clicking too many times (as many as 100
for a 60-second chunk) without thinking. The prompt adds
self-verification to the task, which encourages the worker to
process the workflow by each step. The prompt also includes
an example label to show the format and level of detail they
are expected to provide (Figure 7).

Post-Processing: The workflow intelligently merges results
from multiple workers to generate step candidates. To cluster
nearby time points given by different workers into a single
step, we use the DBSCAN clustering algorithm [12] with a
timestamp difference as the distance metric. The clustering
idea is shown in Clusters 1 and 2 in Figure 8. The algorithm
takes ε as a parameter, which is defined by the maximum dis-
tance between two points that can be in a cluster relative to the
distance between farthest points. We train ε once initially on
a small set of pilot worker data and ground truth labels. Our
tests show that the values between 0.05 and 0.1 yield high
accuracy, regardless of domain or video. We configured the
algorithm to require at least two labels in every cluster, simi-
lar to majority voting among the three workers who watched
the segment. We considered other clustering algorithms such
as K-Means, but many require the number of clusters as an
input parameter. In video annotation, the number of steps is
neither known a priori nor consistent across videos.

Depending on videos and parameters, the DBSCAN algo-
rithm might over-generate (false positive) or under-generate

Figure 9. The Verify stage asks the worker to choose the best description
of a candidate step. The options come from workers in the Find stage.
Additional default options allow the worker to either suggest a better
description or mark the step as invalid.

(false negative) clusters. We bias the algorithm to over-
generate candidate steps (‘potential cluster’ in Figure 8) and
aim for high recall over high precision, because the first stage
is the only time the workflow generates new clusters. We im-
prove the initial clusters in three ways, with the goal of higher
recall than precision. First, we take into account the textual
labels to complement timing information. The clustering ini-
tially relies on workers’ time input, but using only time might
result in incorrect clusters because steps are distributed un-
evenly time-wise. Sometimes there are steps every few sec-
onds, and other times there might be no step for a minute. We
run a string similarity algorithm between text labels in border
points in clusters, to rearrange them to the closer cluster. Sec-
ond, we break down clusters that are too large by disallowing
multiple labels from one worker to be in a cluster. Finally, if
there are multiple unclustered points within ε between clus-
ters, we group them into a candidate cluster. For each cluster,
we take a mean timestamp as the representative time to ad-
vance to the Verify stage.

Stage 2: VERIFY steps
Here the worker’s verification task is to watch a 20-second
clip that includes a candidate step and textual descriptions
generated from the prior stage, and vote on the best descrip-
tion for the step (Figure 9). The workflow assigns three work-
ers to each candidate step, whose votes are later merged.

Pre-processing: For each of the candidate steps from Stage
1, the workflow segments videos into 20-second clips around
each step (10 seconds before and after).

Task Design: To prevent workers from selecting the first re-
sult without reviewing all options, we randomize the order of
options presented each time. We also lowercase all labels
to prevent capitalized descriptions from affecting the deci-
sion. Also, the Submit button becomes clickable only after
the worker finishes watching the 20-second clip.

In addition to candidate text descriptions, two additional op-
tions are presented to workers: “I have a better description”,



Figure 10. The Expand stage asks the worker to choose the best before
and after images for a step. The worker visually reviews the thumbnail
options and clicks on images to decide.

which improves the step label, and “There is no instruction”,
which filters out false positives from Stage 1.

Post-Processing: Two possible outputs of this stage are 1)
finalizing the timestamp and description for a valid step, or 2)
removing a false step. The workflow uses majority voting to
make the final decision: If two or more workers agreed on a
description, it becomes the final choice. If workers are split
between three different options, it checks if some of the se-
lected text descriptions are similar enough to be combined.
We first remove stop words for more accurate comparisons,
and then apply the Jaro-Winkler string matching algorithm
[17]. If the similarity score is above a threshold we config-
ured with initial data, we combine the two descriptions with
a longer one. If not, it simply picks the longest one from the
three. The decision to pick longer description for tie-breaking
comes from a pilot observation that longer descriptions tend
to be more concrete and actionable (e.g., “grate three cups of
cheese” over “grate cheese”).

Stage 3: EXPAND with before and after images for steps
This final stage collects the before and after images of a step,
which visually summarize its effect. This stage captures sur-
rounding context and causal relationships by expanding on
what is already identified in Find and Verify. The worker’s
task here is to watch a 20-second video clip of a step, and se-
lect a thumbnail that best shows the work in progress (e.g.,

Figure 11. Our evaluation uses the Hungarian method to match ex-
tracted and ground truth steps with closest possible timestamp within a
10-second window size. Then we compute precision and recall, which in-
dicate if our workflow over- or under-extracted steps from ground truth.

food, face, or Photoshop image) before and after the step
(Figure 10). The workflow assigns three workers to each step.

Pre-processing: This stage uses a 20-second video clip of
a step verified in Stage 2, and uses its final text label to de-
scribe the step. It creates thumbnails at two-second intervals
to present as options, 10 seconds before and after the step.

Task Design: Our initial design asked workers to click when
they see good before and after images, but this resulted in low
accuracy due to variable response time and the lack of visual
verification. We then simplified the task to a multiple choice
question. Selecting from static thumbnail images makes the
task easier than picking a video frame.

Post-Processing: Similar to the Verify stage, we apply ma-
jority voting to determine the final before and after images.
For merging and tie breaking, we use Manhattan distance, an
image similarity metric that computes pixel differences be-
tween two images.

EVALUATION
We deployed our annotation workflow on Mechanical Turk
and evaluated on:

• Generalizability: Does the workflow successfully gener-
ate labels for different types of how-to tasks in different
domains with diverse video production styles?

• Accuracy: Do collected annotations include all steps in the
original video, and avoid capturing too many (false posi-
tive) or too few (false negative)? How do textual descrip-
tions generated by crowd workers compare to those gener-
ated by trained annotators?

Methodology
We used our workflow and Mechanical Turk to fully extract
step information from the 75 how-to videos in our annotation
corpus, with 25 videos each in cooking, makeup, and graphics
editing software (Photoshop). We did not filter out videos
based on use of subtitles, transitions, or audio, to see if our
annotation workflow is agnostic to presentation styles. Out of
75 videos in our set, 7 did not have audio, and 27 contained
text overlays. For each domain, we picked five tasks to cover
diverse types of tasks: Cooking – pizza margherita, mac and
cheese, guacamole, samosa, and bulgogi; Makeup – bronze
look, reducing redness, smokey eyes, bright lips, and summer



glow; Photoshop: motion blur, background removal, photo to
sketch, retro effect, and lomo effect. The mean video length
was 272 seconds, summing to over 5 hours of videos.

Results
Our evaluation focuses on comparing the quality of step in-
formation produced by our crowdsourcing workflow against
ground truth annotations from our corpus.

The Turk crowd and trained annotators (two co-authors
with educational video research experience) generated similar
numbers of steps (Table 1). In Stage 1, 361 one-minute video
segments were assigned to Turkers, who generated 3.7 candi-
date steps per segment, or 53.6 per video. Clustering reduced
that to 16.7 steps per video. Stage 2 further removed over-
generated steps, resulting in 15.7 per video, which is nearly
equivalent to the ground truth of 15 steps per video.

Precision indicates how accurate extracted steps are com-
pared to ground truth, while recall shows how comprehen-
sively the workflow extracted ground truth steps (Figure 11).
We present precision and recall results considering only the
timing of steps (Stage 1), and both the timing and the tex-
tual description accuracy (Stage 2). For matching crowd-
extracted steps to ground truth steps, we use the Hungarian
method [19] whose cost matrix is filled with a time distance
between steps.

Evaluating Stage 1: FIND
We consider only precision and recall of times in the Stage 1
evaluation because final textual descriptions are not yet deter-
mined. Detecting the exact timing of a step is not straightfor-
ward, because most steps take place over a time period, verbal
and physical steps are commonly given with a time gap.

To more accurately account for the timing issue, we set a
highest threshold in time difference that accepts a Turker-
marked point as correct. We set the threshold to 10 seconds,
which indicates that a step annotation more than 10 seconds
off is discarded. This threshold was based on heuristics from
step intervals in our corpus: We hand-annotated, on average,
one step every 17.3 seconds in our video corpus (mean video
length / number of steps in ground truth = 272/15.7), so a
maximum 10-second difference seems reasonable.

The mean distance between ground truth steps and extracted
steps (ones within 10 seconds of the ground truth) was only
2.7 seconds. This suggests that for matched steps, the time-
based clustering successfully detected the timing information
around this distance. When considering only time accuracy,
our workflow shows 0.76 precision and 0.84 recall (Table 2).

Evaluating Stage 2: VERIFY
Here we combine the accuracy of both timing and text de-
scriptions. Precision for this stage captures what fraction of
steps identified by the workflow are both placed correctly on
the time line and whose description reasonably matches the
ground truth. The analysis shows 0.77 precision and 0.81 re-
call over all the videos (Table 2).

For text accuracy measurement, we use the string similarity
algorithm to see if a suggested description is similar enough

By Turkers After Stage1 After Stage2 Ground Truth
53.6 16.7 15.7 15.0

Table 1. The mean number of steps generated by the workflow in each
stage. At the end the workflow extracted 15.7 steps per video, which
is roughly equivalent to 15.0 from ground truth. Stage 1 clusters the
original Turker time points, and Stage 2 merges or removes some.

Stage 1. Time only Stage 2. Time + Text
Precision Recall Precision Recall

0.76 0.84 0.77 0.81
Table 2. When considering time information only, recall tends to be
higher. When considering both time and text descriptions, incorrect text
labels lower both precision and recall, but removing unnecessary steps
in Stage 2 recovers precision.

to a description from ground truth. We apply the same thresh-
old as what we configured in the workflow for tie breaking in
the Verify stage. The precision and recall both go down when
the text similarity condition is added, but precision recovers
from the post-processing of steps in this stage. Two enhance-
ments contribute to this recovery: removing steps that work-
ers indicated as “no instruction” from the task, and merging
nearby steps that have identical descriptions.

In 76% of the steps, two or more Turkers agreed on a single
description. For the rest, the tie breaking process determined
the final description. For 13% of the steps, Turkers provided
their own description.

Evaluating Stage 3: EXPAND
This evaluation should judge if crowd-selected before and af-
ter images correctly capture the effect of a step. Because this
judgment is subjective, and there can be multiple correct be-
fore and after images for a step, we recruited six external hu-
man evaluators to visually verify the images. We assigned
two evaluators to each domain based on their expertise and
familiarity with the domain, and gave a one-hour training
session on how to verify before and after images. For each
workflow-generated step, we presented an extracted text de-
scription along with a before and after image pair. Their task
was to make binary decisions (yes / no) on whether each im-
age correctly represents the before or after state of the step.

We used Cohen’s Kappa to measure inter-rater agreement.
The values were 0.57, 0.46, 0.38, in cooking, makeup, and
Photoshop, respectively, which show a moderate level of
agreement [1]. Results show that on average, both raters
marked 60% of before and after images as correct. At least
one rater marked 81.3% as correct.

Cost, time, and tasks
We created a total of 8,355 HITs on Mechanical Turk for an-
notating 75 videos. With three workers on each task and a re-
ward of $0.07, $0.03, and $0.05 for Find, Verify, and Expand,
respectively, the average cost of a single video was $4.85, or
$1.07 for each minute of a how-to video. The Expand stage
was more costly ($2.35) than the first two; thus, time points
and text descriptions can be acquired at $2.50 per video. The
average task submission time was 183, 80, and 113 seconds
for Find, Verify, and Expand, respectively.



Results summary
In summary, our workflow successfully extracted step in-
formation from 75 existing videos on the web, generalizing
to three distinct domains. The extracted steps on average
showed 77% precision and 81% recall against ground truth,
and were 2.7 seconds away from ground truth. Human evalu-
ators found 60% of before and after images to be accurate.

DISCUSSION AND LIMITATIONS
We now discuss qualitative findings from the experiment,
which might have practical implications for future re-
searchers designing crowd workflows.

Detecting precise timing of a step. We observed that Turkers
add new steps with higher latency than trained annotators, re-
sulting in Turker-labeled time points being slightly later than
those by annotators for the same step. The trained annotators
often rewinded a few seconds to mark the exact timing of a
step after seeing the step, whereas most Turkers completed
their tasks in a single pass. While this might be a limitation
of the workflow, our results show that a reasonable window
size mitigates such differences. We will explore time-shifting
techniques to see if timing accuracy improves.

Handling domain and video differences. Extraction accu-
racy in our workflow was consistent across the three domains
with different task properties. This finding validates our
domain-agnostic approach based on the general properties of
procedural tasks. Photoshop videos were often screencasts,
whereas cooking and makeup videos were physical demon-
strations. Cooking videos contained higher number and den-
sity of steps than makeup or Photoshop videos, while Photo-
shop and makeup videos often had longer steps that required
fine-grained adjustments and tweaking. Also, some videos
were studio-produced with multiple cameras and high-quality
post-processing, while others were made at home with a we-
bcam. Our workflow performed robustly despite the various
differences in task properties and video presentation styles.

Extracting steps at different conceptual levels. Video in-
structors present steps at different conceptual levels, and this
makes it difficult to keep consistent the level of detail in Turk-
ers’ step detection. In a makeup video, an instructor said
“Now apply the bronzer to your face evenly”, and shortly af-
ter applied the bronzer to her forehead, cheekbones, and jaw-
line. While trained annotators captured this process as one
step, our workflow produced four, including both the high-
level instruction and the three detailed steps. Turkers gener-
ally captured steps at any level, but our current approach only
constructs a linear list of steps, which sometimes led to redun-
dancy. Previous research suggests that many procedural tasks
contain a hierarchical solution structure [7], and we plan to
extend this work to hierarchical annotation.

POSSIBLE APPLICATIONS AND GENERALIZATION
We list possible applications that leverage step information
extracted from our workflow, and discuss ways to generalize
the Find-Verify-Expand pattern beyond how-to videos.

Our scalable annotation workflow can enable a series of novel
applications in addition to the ToolScape player. First, better

video search can be made possible with finer-grained video
indices and labels. For example, ingredient search for cook-
ing or tool name search for Photoshop can show all videos
and time points that cover a specific tutorial element. Fur-
thermore, video players can present alternative examples to
a current step. If a learner is watching how to apply the
eyeliner, the interface can show just the snippets from other
videos that include demonstrations of the eyeliner. This al-
lows the learner to hop between different use cases and con-
text for the step of interest, which can potentially improve
learning outcomes.

We believe the Find-Verify-Expand pattern can generalize to
annotating broader types of metadata beyond steps from how-
to videos. For example, from a soccer video this pattern can
extract goal moments with Find and Verify, and then use Ex-
pand to include a crucial pass that led to the goal, or a cere-
mony afterward. Generally, the pattern can extract metadata
that is human-detectable but hard to completely automate. It
is a scalable method for extracting time-sensitive metadata
and annotating streaming data, which can be applied to video,
audio, and time-series data.

CONCLUSION AND FUTURE WORK
This paper presents a scalable crowdsourcing workflow for
annotating how-to videos. The Find-Verify-Expand pattern
efficiently decomposes the complex annotation activity into
micro-tasks. Step information extracted from the work-
flow can enable new ways to watch and learn from how-to
videos. We also present ToolScape, an annotation-enabled
video player supporting step-by-step interactivity, which is a
potential client of this workflow. Our lab study shows the
value of accessing and interacting with step-by-step informa-
tion for how-to videos. Participants watching videos with
ToolScape gained higher self-efficacy, rated their own work
higher, and produced higher-rated designs.

Our future work will explore applying the workflow to addi-
tional procedural task domains such as origami, home DIY
tasks, and Rubik’s cube. We will also explore procedural
tasks that require a conceptual understanding of the underly-
ing concept, such as solving algorithm or physics problems.

Another direction for research is collecting task information
using learners as crowd. We believe learners can potentially
provide more advanced, higher-level, and richer information
not possible with Turkers, if their learning interactions can
naturally provide useful input to the system. Combining
crowdsourcing with “learnersourcing” can extract rich anno-
tations from existing resources while enhancing learning.
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ABSTRACT
With an unprecedented scale of learners watching educational
videos on online platforms such as MOOCs and YouTube,
there is an opportunity to incorporate data generated from
their interactions into the design of novel video interaction
techniques. Interaction data has the potential to help not
only instructors to improve their videos, but also to enrich the
learning experience of educational video watchers. This pa-
per explores the design space of data-driven interaction tech-
niques for educational video navigation. We introduce a set
of techniques that augment existing video interface widgets,
including: a 2D video timeline with an embedded visualiza-
tion of collective navigation traces; dynamic and non-linear
timeline scrubbing; data-enhanced transcript search and key-
word summary; automatic display of relevant still frames next
to the video; and a visual summary representing points with
high learner activity. To evaluate the feasibility of the tech-
niques, we ran a laboratory user study with simulated learning
tasks. Participants rated watching lecture videos with inter-
action data to be efficient and useful in completing the tasks.
However, no significant differences were found in task perfor-
mance, suggesting that interaction data may not always align
with moment-by-moment information needs during the tasks.
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Video learning; Interaction peaks; Video summarization;
MOOCs; Multimedia learning; Video content analysis.
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INTRODUCTION
Millions of people watch free educational videos online on
platforms such as Khan Academy, Coursera, edX, Udacity,
MIT OpenCourseWare, and YouTube. For example, the “Ed-
ucation” channel on YouTube currently has over 10.5 million
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subscribers, and a typical MOOC has thousands of video-
watching learners. In addition, learners also take paid video-
centric courses on commercial platforms such as Lynda,
Udemy, and numerous university e-learning initiatives.

The server logs of these platforms contain fine-grained,
second-by-second data of learners’ interactions with videos,
which we refer to as interaction traces. This data is now be-
ing used for real-time analytics to optimize business metrics
such as viewer engagement time. Researchers have also used
this data to perform retrospective empirical analyses. For ex-
ample, video analytics studies on MOOCs have compared
the effects of video production methods on learner engage-
ment [13] and identified common causes of peaks in learner
activity within videos [20].

Interaction data provides a unique opportunity to under-
stand collective video watching patterns, which might in-
dicate points of learner interest, confusion, or boredom in
videos. However, to our knowledge, researchers have not yet
attempted to feed these patterns back into the video naviga-
tion interface to support learners. While learners might have
diverse goals in navigating through a video, existing video
interfaces do not provide customized navigation support be-
yond scrubbing on a linear timeline slider with thumbnail pre-
views and synchronizing with a textual transcript. Adapting
to collective video watching patterns can lead to richer social
navigation support [10].

This paper explores the design space of navigation techniques
for educational videos that leverage interaction data. We in-
troduce novel data-driven interaction techniques that process,
visualize, and summarize interaction data generated by many
learners watching the same video. For instance, in a typical
MOOC, at least a few thousand learners watch each video.
Based on prior findings about learner intent and typical for-
mats of educational videos [13, 20], we have designed these
techniques to support fluid and diverse video navigation pat-
terns. Typical video watching scenarios include:

• Rewatch: “Although I understand the high-level motiva-
tion, I didn’t quite get the formal definition of ‘admissible
heuristic’ the first time I watched this lecture. So I want to
rewatch the section explaining the formal definition.”
• Textual search: “I want to jump to where the instructor first

mentioned the phrase ‘alpha-beta pruning.”’



Figure 1. This paper presents three sets of novel interaction techniques to improve navigation of educational videos. 1) Dynamic timelines (Rollercoaster
Timeline, Interaction Peaks, and Personal Watching Trace), 2) Enhanced in-video search (Keyword Search and Interactive Transcript), 3) Highlights
(Word Cloud, Personal Bookmarks, Highlight Storyboard). All techniques are powered by interaction data aggregated over all video watchers.

• Visual search: “I remember seeing this code example in a
diagram somewhere in the video. I want to find it again.”
• Return: “Hey, that was annoying! I don’t want to see

the instructor’s talking head. I’m not done looking at this
PowerPoint slide yet. I want the slide back!”
• Skim: “This lecture seems somewhat trivial. I’ll skim to

see if there’s something I probably shouldn’t miss.”

Specifically, we developed interaction techniques to augment
a traditional Web video player with 1) a Rollercoaster time-
line that expands the video timeline to a 2D space, visualizes
collective interaction traces of all learners, and dynamically
applies non-linear scrolling to emphasize interaction peaks,
2) enhanced in-video search that visualizes and ranks occur-
rences on the timeline and recommends salient keywords for
each video section, and 3) a video summarization method that
captures frames that are frequently viewed by other learn-
ers. These techniques combine learners’ collective interaction
traces with text and visual content analysis.

We package all of these techniques together in LectureScape,
a prototype Web-based video interface shown in Figure 1.
In a laboratory study with simulated search and skimming
tasks, we observed that participants employ diverse video
navigation patterns enabled by our techniques. Specifically,
they noted that LectureScape helped them to quickly scan the
video and efficiently narrow down to parts to direct their fo-
cus. They also found interaction data to be useful in identify-
ing important or confusing pedagogical points within videos.
However, no significant differences were found in task perfor-
mance, suggesting that interaction data may not always align
with moment-by-moment information needs participants had
for the study tasks.

This paper makes the following contributions:

• a conceptual design approach for interaction techniques
that leverages information about other learners’ behavior
to improve the video learning experience,
• a set of novel video interaction techniques powered by real

log data from learners in a MOOC platform, introducing
1) a 2D, non-linear timeline, 2) enhanced in-video search,
and 3) a data-driven video summarization method,
• and an empirical evaluation of the techniques with learners,

which enabled fluid and diverse video navigation.

RELATED WORK
We review previous research in leveraging interaction history
to improve user interfaces and video navigation.

Leveraging Interaction History
There is a rich thread of research in using interaction history
data to analyze usage patterns and improve users’ task per-
formance. Interaction history data is automatically collected
by applications during normal usage. Examples include Web
browsers logging Web page visit history, search engines cap-
turing query history, and video players storing video inter-
action clickstreams such as play and pause events. Read
Wear [14] presented a visionary idea in this space to visu-
alize users’ read and edit history data in the scrollbar. Chron-
icle [12] captured and provided playback for rich, contextual
user interaction history inside a graphical application. Dirty
Desktops [16] applied magnetic forces to each interaction
trace, which improved target selection for commonly used
widgets. Patina [26] separated individual and collective his-
tory and added overlays on top of the GUI, to help people find
commonly used menu items and discover new ways of com-
pleting desktop-related tasks. Causality [30] introduced an



application-independent conceptual model for working with
interaction history. This paper uses video interaction history
to support common navigation tasks in video-based learning.

To model user interest in video watching, researchers have
proposed features such as viewership [38], scrubbing [39],
zooming and panning [7], and replaying and skipping [9] ac-
tivities. SocialSkip [9] applied signal processing to replay-
ing activity data in order to infer interesting video segments.
Other researchers have used more explicit input from video
watchers, including user ratings [33], annotations [38], and
the “this part is important” button [36]. Most existing ap-
proaches introduce a modeling technique or data visualiza-
tion. We take this data further to build new interaction tech-
niques for video navigation, which prior work has not done.
Also, we combine both implicit user history data and explicit
user bookmarks to support diverse learning tasks, which ex-
tends prior work on supporting social navigation for lecture
videos [28].

Video Navigation Techniques
To improve video navigation with interaction data, we de-
signed novel techniques to 1) add richer interactions to the
video timeline, 2) support enhanced in-video search, and 3)
automatically summarize video content. We now review re-
lated work for each of the three techniques.

To improve video scrubbing, YouTube displays thumbnail
previews for quickly skimming local frames, and Swift [25]
overlays low-resolution thumbnails to avoid network latency
delays. The content-aware timeline [34] extracts keyframes
with content analysis and plays a video snippet around these
points when the user scrubs the timeline. Elastic inter-
faces [24] use the rubber band analogy to control scrub-
bing speed and support precise navigation, as seen in the PV
Slider [35] and Apple’s iOS video interface. We extend this
line of research by asking: “What if the scrubbing behavior
adapts to learners’ watching patterns, as collected from inter-
action history data?” To our knowledge, no video scrubbing
technique has leveraged interaction history data.

Another thread of research introduced techniques to support
navigation of how-to videos, a sub-genre of educational video
that includes procedural, step-by-step instructions about com-
pleting a specific task. Existing systems reveal step-by-step
structure by adding rich signals to the video timeline, such
as tool usage and intermediate results in graphical applica-
tions [8, 21]. Classroom lecture videos tend to be less struc-
tured than how-to videos, which makes capturing clear struc-
tural signals harder. We instead turn to interaction data that is
automatically logged for learners as they watch the video.

Popular GUI applications such as Web browsers and text edi-
tors have incremental search features where the scrollbar and
text visually highlight locations of search term occurrences.
Also, video players on educational platforms such as edX
show a synchronized transcript alongside the currently play-
ing video. Learners can search for text in the transcript and
then click to jump to the corresponding spot in the video. We
improve these interfaces by augmenting search results with
interaction data and visualizing them on the video timeline.

Existing video summarization techniques use video content
analysis to extract keyframes [3], shot boundaries [22], and
visual saliency [15]. To provide an overview of the entire
clip at a glance and support rapid navigation, recent research
has used a grid layout to display pre-cached thumbnails [27],
short snippets [18] in a single clip, personal watching his-
tory for multiple clips [1], a conceptual hierarchy visualiza-
tion [19], or a 3D space-time cube display [31]. For edu-
cational lecture videos, Panopticon [18] has been shown to
shorten task completion time in seeking information inside
videos [32]. For blackboard-style lecture videos, NoteV-
ideo [29] reverse-engineers a rendered video to create a sum-
mary image and support spatial and temporal navigation. This
paper introduces a new summarization technique that uses in-
teraction peaks, points in a video with significantly high play
button click activity, to generate highlight frames of a clip.

DESIGN GOALS
This work focuses on supporting video navigation patterns
common in online education, which differ from watching,
say, a movie or TV show in a sequential, linear manner.
Our designs are informed by quantitative and qualitative find-
ings from analyses of educational videos, which suggest that
learners often re-watch and find specific information from
videos. Prior work in video clickstream analysis on four edX
MOOCs found many interaction peaks, i.e., concentrated
bursts in play/pause button clicks during certain segments of
a video [20]. 70% of automatically-detected peaks coincided
with visual transitions (e.g., switching between an instruc-
tor’s head and a slide) and topic transitions [20]. A challenge
in using interaction data to support learning is that the mean-
ing of an interaction peak can be ambiguous (e.g., interest,
confusion, or importance). In this paper, we do not assume
a specific meaning behind interaction peaks, but do assume
they are worth emphasizing regardless of the real cause. If a
peak indicates importance, it would make sense to highlight it
for future learners. If it indicates confusion, it may still make
sense to emphasize so that learners would pay more attention.

To discover unsupported needs in lecture video navigation,
we also conducted multiple rounds of feedback sessions with
learners using our initial prototypes. The data analysis and
interviews led to three high-level goals that informed our de-
sign of data-driven video interaction techniques.

Provide easy access to what other learners frequently
watched. Our observations suggest that learners find it hard
to identify and navigate to important parts of information-
dense educational videos. To help a learner make more in-
formed decisions about which part of the video to review, we
leverage other learners’ interaction traces, especially interac-
tion peaks. We designed navigation techniques to emphasize
these points of interest while the learner visually scans the
video or physically scrubs the timeline.

Support both personal and collective video summaries. To
prepare for homework assignments or exams, learners often
take notes and watch videos multiple times to create a mean-
ingful summary. Since there are often thousands of learners
watching each video, we explore ways to present collective
interaction traces as an alternative summary to complement



each learner’s personal summary. We extend prior work on
social navigation in videos [28], history visualization, and re-
visitation mechanisms by supporting both manual bookmark-
ing and automatic personal and collective watching traces.

Support diverse ways to search inside of a video. In our
formative studies, learners described different ways they look
for specific information inside a video. They would rely on
both textual cues (e.g., topic and concept names) and visual
cues (e.g., an image or a slide layout) to remember parts of the
video. A more challenging case is when they cannot remem-
ber what the cue was for their particular information need.
This observation inspired us to support both active search
(e.g., when the learner has a clear search term), and ambient
recommendations (e.g., when the learner does not know ex-
actly what to search for). We designed techniques to enhance
existing search mechanisms with interaction data, which pro-
vide social cues to serve both search scenarios.

DATA-DRIVEN VIDEO NAVIGATION TECHNIQUES
We introduce three interaction techniques to improve navi-
gation of educational videos: an alternative timeline, search
interface, and summarization method. Our main insight is
to use the non-uniform distribution of learner activity within
a video to better support common navigation patterns. Al-
though the prototypes shown in this paper use videos on edX,
a MOOC (Massive Open Online Course) platform, the tech-
niques can be implemented for other video platforms such as
YouTube because they use only standard Web technologies.

Figure 2. The 2D Rollercoaster timeline that appears below each video
instead of a traditional 1D timeline. The height of the timeline at each
point shows the amount of navigation activity by learners at that point.
The magenta sections are automatically-detected interaction peaks.

The Rollercoaster Timeline: 2D, Non-Linear Timeline
To help learners identify and navigate to important parts of
the video, we introduce the rollercoaster timeline. Unlike a
traditional 1D timeline, the rollercoaster timeline is 2D with
an embedded visualization of second-by-second learner in-
teraction data (Figure 2). It visualizes the navigation fre-
quency as a proxy of importance, as revealed by the behavior
of other learners, and modifies the timeline scrubbing behav-
ior to make precise navigation in important regions easier.

Navigation events are logged when the learner pauses and re-
sumes the video, or navigates to a specific point. The Roller-
coaster timeline uses navigation event counts as the verti-
cal dimension. This visualization can also show other kinds
of interaction events, including the number of viewers, re-
watchers, unique viewers, or play or pause button clicks.

2D timeline
If the learner wants to jump to a specific point in the video, he
can click on any point in the 2D timeline, which will capture
the x coordinate of the click and update the playhead. The
embedded peak visualization shows the intensity and range of
each peak, and the overall distribution of the peaks within a

video. Since interaction peaks are highlighted in magenta and
span a wider region than other points, the learner can visually
review and navigate to the commonly revisited parts in the
video. We use the Twitinfo [23] peak detection algorithm to
detect peaks in the server log data.

Figure 3. Non-linear scrubbing in the Rollercoaster timeline. To draw
the learner’s attention to content around interaction peaks, the phantom
cursor decelerates scrubbing speed when the cursor enters a peak range.

Non-linear scrubbing with the phantom cursor
This timeline also enables dynamic, non-linear scrubbing,
which takes advantage of interaction peaks. The basic idea is
to apply friction while scrubbing around peaks, which leads
to prolonged exposure so that learners can get a more compre-
hensive view of the frames near the peaks even when scrub-
bing quickly. Friction also makes it easier to precisely select
specific frames within the range, since it lowers the frame
update rate. It is an example of control-display ratio adap-
tation [5, 16, 37], dynamically changing the ratio between
physical cursor movement and on-screen cursor movement.

Previous techniques have applied elastic, rubber band-like in-
teractions to scrubbing [17, 24, 34, 35]. Our technique dif-
fers in that 1) it uses interaction data instead of content-driven
keyframes, 2) elasticity is selectively applied to parts of the
timeline, and 3) the playhead and the cursor are always syn-
chronized, which reduced user confusion in our pilot studies.

When the mouse cursor enters a peak region while dragging,
the dragging speed slows down relative to the dragging force,
creating the sense of friction. The faster the dragging, the
weaker the friction. We achieve this effect by temporarily
hiding the real cursor, and replacing it with a phantom cur-
sor that moves slower than the real cursor within peak ranges
(Figure 3). The idea of enlarging the motor space around tar-
gets is inspired by Snap-and-Go [4].

Figure 4. The real-time personal watching traces visualize segments of
the video that the learner has watched.

Personal watching trace visualization
When we observed pilot study users navigating videos with
our timeline, a common desire was to keep track of which
parts of the video they personally watched, which might not
align with the aggregate interaction peaks collected over all
learners. Thus, we added another stream under the timeline



to visualize each learner’s personal watching traces. Pre-
vious research has separated personal and collective history
traces to support GUI command selection [26], and added his-
tory indicators to a document scrollbar [2], which improved
task performance in information finding. We extend these
approaches to video navigation by using personal watching
traces to support revisitation. Once the learner pauses the
video or jumps to a new point, the current watching segment
is visualized on a separate track below the timeline (Figure 4).
Clicking on a generated segment replays the segment. More
recent segments are displayed with higher opacity to further
emphasize them over older ones. These traces can be stored
on a per-user basis to help learners quickly find points of in-
terest when they return to re-watch a video at a later date.

Keyword Search and Visualization
To better support searching for relevant information inside of
a video, we use interaction data to power keyword search
and transcript analysis. Instead of weighing all occurrences
equally, our search technique rewards results in sections of
the video where more learners watched. Since key concepts
often appear dozens of times in a video, this feature helps
the learner prioritize which parts of the video to review. Fur-
thermore, to support novice learners who do not necessarily
have the vocabulary to translate their information needs into
a direct search query, we suggest major topics discussed in
each section of the video in a word cloud. These topics serve
as a keyword summary that can help learners recognize and
remember the main topics discussed in each video.

Figure 5. Our interaction data-driven keyword search brings in more
context for the learner to decide where to focus on when searching for a
keyword. For instance, the learner can visually check the distribution of
when the lecturer said the keyword in the current video, which is useful
in seeing where it was heavily discussed versus simply introduced.

Keyword search
If the learner has a keyword to search for, she can type it in
the search field (top right in Figure 5), which searches over
the full transcript of a video clip, and displays results both on
the timeline and in the transcript. When the learner enters a
search query, the timeline dynamically displays the search re-
sults instead of the default interaction visualization (see Fig-
ure 6). In this way, the timeline serves as a dynamic space
for supporting different learner tasks by changing the peak
points it emphasizes. Each result renders as a pyramid-shaped
distribution, whose range is the duration of the sentence the

word belongs to and whose peak is where the term is spo-
ken. Figure 7 shows how hovering over the result displays
a tooltip, and clicking on the result plays the video from the
beginning of the sentence that includes the search term. This
sentence-level playback provides the learner with more con-
text surrounding the term.

Figure 6. The search timeline appears below the video after each search.
It visualizes the positions of search results, as well as the relative impor-
tance of each. Here the high peak in the middle indicates both that it
contains the search term and that lots of learners watched that part.

Figure 7. Hovering on a search result displays a tooltip with the tran-
script sentence that contains the search term. Clicking on the result
plays the video starting at the beginning of the sentence to assist the
learner with comprehending the surrounding context.

Because key terms are repeated many times even during a
short video, it can be hard for the learner to locate the most
important search result. For example, in a 5-minute edX
video on iterative algorithms, “variable” is mentioned 13
times, and “state” 12 times. We use interaction data to rank
search results, with the assumption that parts of the video
more frequently watched by previous learners are likely to
reflect the current learner’s interest. Our ranking algorithm
analyzes learner activity around a search result and assigns a
weight to the result, giving higher weights to sentences that
were viewed by more learners. It then computes the relevance
score by combining this weight with term frequency within
the sentence. To support quick visual inspection of search re-
sults, we represent the computed score as the height on the
timeline (gray peaks in Figure 6). If the term was mentioned
multiple times in a sentence, we convolve the distributions for
all occurrences and assign the maximum score to it.

Figure 8. The word cloud displays automatically-extracted topics for the
currently visible section of the video, providing a keyword-based sum-
marization of the video. Clicking on any word triggers a search for it.

Word cloud: topic summarization and visualization
To address the low visual variation between frames in many
videos and to help learners recognize and remember major
topics in the clip, we use word clouds to dynamically dis-
play keywords in different segments of the video. We use
TF-IDF (term frequency-inverse document frequency) scores
for extracting keywords and weighing their importance. To
compute the TF-IDF scores for the keywords in a transcript,



we define a document as the transcription sentences between
two consecutive interaction peaks, and the background corpus
as the collection of all video transcripts in the entire course.
This user activity-driven mechanism extracts self-contained
segments from each video.

The visualization is positioned directly above the video as a
panel consisting of three word clouds (see Figure 8), and gets
updated at every interaction peak. The center cloud corre-
sponds to the present segment being viewed, and two addi-
tional clouds represent the previous and upcoming segments,
respectively. These displays are intended to give a sense of
how lecture content in the current segment compares to that
of surrounding segments. To bring focus to the current word
cloud, we de-emphasize the previous and next word clouds by
decreasing their opacity and word size relative to the current
cloud. Clicking on any keyword in the cloud triggers a search
using that term, visualizing the occurrences in the transcript
as well as on the timeline.

Video Summarization with Highlights
To enable a quick overview of important points, we present a
strip of visual highlights of selected video frames. Consistent
with our design goal of providing access to both personal and
collective interaction traces in the timeline, we support both
collective and personal highlights. Collective highlights are
captured by interaction peaks, while personal highlights are
captured by the learner bookmarking a frame of interest.

Interaction peak highlights
We capture interaction peaks and provide one-click access to
them to support common watching patterns such as jumping
directly to these points. The storyboard-style display of the
peak frames allows the learner to visually scan the video’s
progress (Figure 1). These highlights are visually-oriented,
while the word cloud of Figure 8 is text-oriented.

Figure 9. Our pinning algorithm analyzes interaction peaks and visual
transitions in the video to display a smaller static frame (on the left) next
to the video (on the right). Learners can manually pin any frame as well.

Pinning video frames
Most existing video players display only one frame at a time.
This ubiquitous interface is sensible for the narrative struc-
ture of general-purpose videos such as TV shows, where a
sequential flow is natural. However, educational videos are
information-heavy, and active learning involves skimming
and scrubbing [20]. For example, an instructor might verbally
refer to the formula she described in the previous PowerPoint

slide, but the formula might no longer be available on screen.
A learner who wants to refer to that formula has to scrub the
video timeline to go back to a frame with the relevant for-
mula slide. To support watching patterns that are not easily
supported by existing players, our video player pins a relevant
frame next to the video stream for easy reference (Figure 9).

Our video player automatically determines a frame to pin.
A relevant pinned frame should 1) not be identical to what
is currently shown in the video, 2) include important con-
tent that is worth referencing, and 3) contain readable content
such a textual slide or technical diagram, not merely a static
frame of the instructor’s face or students sitting in a class-
room. Otherwise, juxtaposing a static frame next to the video
might cause distraction and visual clutter. To meet these re-
quirements, our pinning algorithm uses both interaction peaks
and visual transitions. It automatically pins an interaction
peak frame if there is a visual transition shortly after the peak.
Checking for a visual transition ensures that the pinned frame
is not visually identical to the frames right after the transi-
tion. Also, pinning an interaction peak frame ensures that the
frame at least includes content viewed by many others.

The learner can also manually pin a frame by clicking the pin
icon attached to each peak frame, which replaces the current
pinned frame with the learner’s. While the system attempts its
best effort to show the most relevant frame at a given time, the
learner also has the flexibility to control what gets displayed.

Figure 10. The learner can add a labeled bookmark, which is added to
the highlights stream below the video for visual preview and revisitation.

Personal bookmarks
While peak frames might be a reasonable summary of a
video, individual learners might have summarization needs
that are not captured by the collective traces. The learner can
add personal bookmarks by clicking on the “Add Bookmark”
button. The learner can see the captured frame at the point
of click and add their own label for future reference (Fig-
ure 10). Once a bookmark is saved, it is added to the high-
lights stream, chronologically ordered along with other book-
marks and interaction peak highlights. This view allows the
learner to choose between naturally-formed interaction peaks
by other learners as well as self-generated bookmarks.

LECTURESCAPE: WEB-BASED PROTOTYPE
This section introduces LectureScape, a prototype lecture
video player that combines all of the techniques in a unified
interface (see Figure 1). The main goal of LectureScape is to
give learners more control and flexibility in deciding how to
navigate educational videos. LectureScape features the video
player in the main view, along with the Rollercoaster timeline
below the video and the word cloud above it. The interactive
transcript is in the right sidebar, and the highlights are posi-
tioned at the bottom of the screen. The search box at the top



enables keyword search. The widgets are all collapsible to
reduce visual clutter and to hide unused features.

We implemented LectureScape using standard Web technolo-
gies: HTML5, CSS3, and JavaScript. The word cloud and
Rollercoaster timeline are rendered with D3 [6]. Our cus-
tomized HTML5 video player does not require additional re-
encoding or streaming, and is independent of the encoding or
streaming method used. It only requires interaction data for
each video to activate the data-driven interaction techniques.
Our data processing pipeline formats interaction traces and
generates visual assets from an existing video.

First, three data streams are stored for each video: interaction
data, TF-IDF results on the transcript, and visual transition
data. Our peak detection algorithm runs on page load, which
allows dynamic parameter tuning. Peak detection is run on
both the interaction data and visual transition data, which re-
turns interaction peaks and shot boundaries, respectively.

Second, the system generates thumbnail images for each sec-
ond of a video. Because many of our interactions require dis-
playing a thumbnail of a video frame on demand, low latency
in image loading is crucial in supporting seamless interac-
tions. It is especially important for educational videos whose
visual changes are more subtle than in movies or TV shows,
and whose on-screen information matters for learners to read
and comprehend. Upon a page load, the system preloads all
thumbnails for a video. When a learner drags the timeline, in-
stead of loading the video each time a dragging event is trig-
gered, our player pauses the video and displays an overlay
screenshot. This results in much less latency and smoother
dragging, similar to the benefits reported by Swift [25].

EVALUATION
To assess the feasibility of using interaction data to enhance
video navigation, we conducted a user study comparing video
players with and without our data-driven interaction tech-
niques. We explored three research questions:

• RQ1. How do learners navigate lecture videos with
LectureScape in typical kinds of learning tasks such as
search and summarization?
• RQ2. How do learners interpret interaction data presented

in LectureScape?
• RQ3. Are LectureScape’s features useful and learnable?

Study Design
The study was a within-subjects design, where each learner
used both LectureScape and a baseline interface that stripped
off all interaction data-related features from LectureScape.
The baseline interface still included the interactive transcript
and preview thumbnails on hover, to emulate what is available
in platforms such as edX or YouTube. To maintain uniformity
in look and feel for our comparative study, the baseline inter-
face had the same layout and visual design as LectureScape.

Learners performed three types of learning tasks for lecture
videos: visual search, problem search, and summarization.
These tasks represent realistic video watching scenarios from
our observations, and match common evaluation tasks used
in the literature on video navigation interfaces [11, 32].

• Visual search tasks involved finding a specific piece of vi-
sual content in a video. These tasks emulated situations
when a learner remembers something visually and wants to
find where it appeared in a video. For example, for a video
about tuples in Python, a visual search task asked: “Find
a slide where the instructor displays on screen examples of
the singleton operation.” Targets were slides that appeared
briefly (less than 20 seconds) in the video. We mixed tasks
that had targets around interaction peaks and non-peaks to
investigate how LectureScape fares even when the target
is not near a peak. For all visual search tasks, we pro-
vided learners with only the video timeline (linear timeline
in baseline, 2D timeline in LectureScape) and removed all
other features (e.g., transcript, word cloud) to restrict video
navigation to timelines only. Learners were told to pause
the video as soon as they navigated to the answer.
• Problem search tasks involved finding an answer to a

given problem. These tasks emulated a learner rewatch-
ing a relevant video to answer a discussion forum ques-
tion or to solve a homework problem. For example, for
a video about approximation methods, a problem search
task asked: “If the step size in an approximation method
decreases, does the code run faster or slower?” Learners
were asked to find the part in the video that discussed the
answer, and then state their answer.
• Summarization tasks required learners to write down the

main points of a video while skimming through it. We gave
learners only three minutes to summarize videos that were
seven to eight minutes long, with the intent of motivating
learners to be selective about what parts to watch.

All videos used in the study were from an introductory com-
puter science course on edX. Interaction data was collected
from server logs during the first offering of the course in fall
2012. The course has been recurring every semester since
then. Each of the eight tasks in the study used different videos
to minimize learning effects. We also chose videos of similar
length, difficulty, and style within each task type to control
for differences across videos.

Participants
We recruited 12 participants (5 male, mean age 25.6,
stdev=11.0, max=49, min=18) via a recruitment flyer on the
course discussion forum on edX and the on-campus course
website, both with consent from instructors. We recruited
only learners who were currently enrolled in the introductory
CS course (either on edX or on campus) to which the videos
belong. The on-campus version of the course shares the same
curriculum but is taught by different instructors. Furthermore,
we picked videos for lessons given earlier in the semester, so
that participants were likely to have already been exposed to
that material before coming to our study, as is often the case in
video re-watching scenarios. Four participants were enrolled
in a current or previous edX offering of the course, while six
were taking the on-campus version. Two had previously reg-
istered in the online offering but were currently taking the
on-campus course. Participants received $30 for their time.

Procedure
A 75-minute study session started with 15-minute tutorials
on both interfaces. Next, participants performed eight learn-



ing tasks: four visual search tasks, two problem search tasks,
and two summarization tasks. After each task, they answered
questions about confidence in their answer and prior exposure
to the video. After each task type, we interviewed them about
their task strategy. For each task type, we counterbalanced
the order of the interfaces and the assignment of videos to
tasks. After completing all the tasks, participants completed
a questionnaire on the usability of each interface and their ex-
perience and opinions about interaction data. All click-level
interactions were logged by the server for analysis.

Results

RQ1. Navigation Patterns for Search and Summarization
In visual search, most participants in the baseline 1D time-
line sequentially scanned the video using thumbnail previews
or dragging. In contrast, participants using the 2D Roller-
coaster timeline often jumped between interaction peaks to
reach the general area of the answer. But the latter strategy
did not help in many cases because interaction data represents
collective interests in a video, not results for a search query.

For the two out of four tasks where the search targets were
located near interaction peaks, it took participants in both
conditions similar amounts of time (LectureScape: µ=85 sec-
onds, σ=51, baseline: µ=80, σ=73). This difference was
not statistically significant with the Mann-Whitney U (MWU)
test (p>0.4, Z=-0.9). For the other two tasks where the search
targets were outside of an interaction peak range, it took par-
ticipants in the LectureScape condition longer to complete
(µ=117, σ=44) than in the baseline condition (µ=90, σ=50),
although the MWU test showed no statistical significance
(p>0.1, Z=-1.5) The longer time might be due to the fact that
many participants navigated by clicking on the peaks to see if
the answer existed around peaks. Nonetheless, results show
that LectureScape did not adversely affect task completion
times even when the answer was not in peak ranges.

Because problem search tasks required some understanding
of the context to provide an answer, participants often tack-
led the problem by narrowing down to a section of the video
that mentioned relevant concepts and then watching the sec-
tion until they found the answer. In the process of narrow-
ing down to a video section, most participants in the baseline
condition relied on searching for keywords (10 out of 12) and
clicking on transcript text (11 / 12), while participants with
LectureScape used search (6 / 12) and clicking on transcript
text (6 / 12) less frequently, and additionally clicked on in-
teraction peaks on the timeline (6 / 12) or highlights below
the video (6 / 12). Over all problem search tasks, partici-
pants in the LectureScape condition completed them slightly
faster (µ=96, σ=58) than participants in the baseline condi-
tion (µ=106, σ=58), although the difference was not signifi-
cant (MWU test, p=0.8, Z=0.3).

In comparison to the other tasks, participants in summariza-
tion tasks did not rely on keyword search (1 / 12 in both
conditions), because the task required them to quickly scan
the entire video for the main points. Many participants with
LectureScape scanned the peak visualization, word cloud,
and highlights for an overview, and clicked on interaction

peaks (9 / 12) or highlights (6 / 12) for a detailed review.
In one video, all six participants with LectureScape visited an
interaction peak almost at the end of the video (located at 6:35
in the 7:00 clip). This slide summarized main ideas of vari-
able binding, which was the topic of the video. In contrast,
in the baseline condition, only one learner navigated to this
section of the video. Most participants spent majority of their
time in the earlier part of the video in the baseline condition.

Despite inconclusive evidence on quantitative differences in
task completion time, participants believed that they were
able to complete the tasks faster and more efficiently with
LectureScape than with the baseline interface. Answers to
7-point Likert scale questions on the overall task experience
revealed significant differences between the two interfaces
in participants’ belief in speed (LectureScape: µ=5.8, Base-
line: µ=4.8) and efficiency (LectureScape: µ=6.1, Baseline:
µ=4.8). The MWU test shows that both differences were sig-
nificant at p<0.05 for these questions.

RQ2. Perception of Interaction Data
Generally, participants’ comments about watching videos
augmented by others’ interaction data were positive. Par-
ticipants noted that “It’s not like cold-watching. It feels
like watching with other students.”, and “[interaction data]
makes it seem more classroom-y, as in you can compare your-
self to what how other students are learning and what they
need to repeat.”

In response to 7-point Likert scale questions about the expe-
rience of seeing interaction data, participants indicated that
they found such data to be “easy to understand” (µ=5.9),
“useful” (5.3), “enjoyable” (5.2), that interaction peaks af-
fected their navigation (5), and that interaction peaks matched
their personal points of interest in the video (4.4).

In an open-ended question, we asked participants why they
thought interaction peaks occurred. Common reasons pro-
vided were that these parts were “confusing” (mentioned by
8 / 12), “important” (6 / 12), and “complex” (4 / 12). Iden-
tifying the cause of a peak might be useful because they can
enable more customized navigation support. While most par-
ticipants mentioned that highlighting confusing and impor-
tant parts would be useful, some noted that personal context
may not match the collective patterns. One said, “If it were
a topic where I was not very confident in my own knowledge,
I would find it very helpful to emphasize where others have
re-watched the video. If however it was a topic I was com-
fortable with and was watching just to review, I would find it
frustrating to have the physical scrolling be slowed down due
to others’ behavior while watching the video.”

RQ3. Perceived Usability of LectureScape
Many participants preferred having more options in navigat-
ing lecture videos. As one learner noted, “I like all the ex-
tra features! I was sad when they got taken away [for the
baseline condition].” Also, when asked if the interface had
all the functions and capabilities they expected, participants
rated LectureScape (6.4) significantly higher than the base-
line interface (4.3) (p<0.001, Z=-3.2 with the MWU test).



However, some expressed that LectureScape was visually
complex, and that they would have liked to hide some wid-
gets not in use at the moment. They found it more difficult
to use than the baseline (ease of use: 4.7 vs. 6.3, p<0.001,
Z=2.7 with the MWU test). This perception leaves room for
improvement in the learnability of the system. A participant
commented: “[LectureScape] is fairly complex and has a lot
of different elements so I think it may take a bit of time for
users to fully adjust to using the interface to its full poten-
tial.” These comments are consistent with our design deci-
sion to support collapsible widgets to reduce visual clutter,
although the version of LectureScape used in the study had
all features activated for the purpose of usability testing.

Due to the limitations of a single-session lab study, few par-
ticipants actively used personal bookmarks or personal his-
tory traces. A longitudinal deployment might be required to
evaluate the usefulness of these features.

Navigation Pattern Analysis
Now we provide a detailed analysis of how participants navi-
gated videos during the study. In all tasks, most participants’
strategy was to start with an overview, and then focus on some
parts in detail. Participants alternated between the overview
and focus stages until they found what they were looking for,
or covered all major points in the video for summarization.

While the high-level strategy was similar in the two video in-
terfaces, participants’ navigation patterns within each of the
two stages differed noticeably. With LectureScape, partic-
ipants used more diverse options for overview and focused
navigation, making more directed jumps to important points
in the video. With the baseline interface, most participants se-
quentially scanned the video for overview and clicked on the
timeline or transcript for focusing. Another common pattern
in the baseline condition was to make short and conservative
jumps on the timeline from the beginning of the video, in or-
der not to miss anything important while moving quickly.

In the overview stage, most participants tried to scan the
video to grasp the general flow and select a few points to re-
view further. One learner described her strategy with Lecture-
Scape in this stage: “having this idea of ‘here’s where other
people have gone back and rewatched, being able to visually
skim through very quickly and see titles, main bullet points,
and following along with the transcript a little bit as well was
definitely helpful.” Although visual scanning did not result
in click log entries, our interviews with participants confirm
that it was a common pattern. They pointed out three main
features in LectureScape that supported overview:

• the 2D timeline with an overall learner activity visualiza-
tion: “I could use the 2D overlay to scroll through... I think
I took a quick scan through and saw the general overview
of what was on the slides.”
• highlight summaries with a strip of screenshots: “They

would get me close to the information I needed. They also
made it easier to quickly summarize.”
• the word cloud with main keywords for sections in the

video: “I just looked at the top keywords, then I watched
the video to see how [the instructor] uses those keywords.”

After scanning for an overview, participants chose a point
in the video to watch further. All of the methods described
above provide a single-click mechanism to directly jump
to an “important” part of the video. Participants reviewed
data-driven suggestions from LectureScape to make informed
decisions. The log analysis reveals that participants using
LectureScape made direct jumps such as clicking on a spe-
cific point in the timeline or a highlight 8.4 times on average
per task, in contrast to 5.6 times in the baseline condition.

In the focus stage, participants watched a segment in the
video and reviewed if content is relevant to the task at hand.
In this stage they relied on methods for precise navigation:
scrubbing the timeline a few pixels for a second-by-second
review, and re-watching video snippets multiple times un-
til they fully comprehend the content. With LectureScape,
participants had options to use the slowed-down scrubbing
around peaks in the rollercoaster timeline, automatic pinning
of the previous slide, and sentence-level playback in search.
To navigate back to the previously examined point, partici-
pants frequently used timestamped anchors attached to search
results, interaction peaks, and highlights.

In summary, with LectureScape, participants used more nav-
igation options in both the overview and focus stages. A
learner commented that “[LectureScape] gives you more op-
tions. It personalizes the strategy I can use in the task.” They
had more control in which part of the video to watch, which
might have led them to believe that they completed the tasks
faster and more efficiently.

DISCUSSION AND FUTURE WORK
Availability of interaction data: Discussion throughout this
paper assumes the availability of large-scale interaction data.
With modern Web technologies, clickstream logging can be
easily added with APIs for video event handling.

There remain unanswered questions around interaction data,
such as “Will using the data-driven techniques bias the data
so that it reinforces premature peak signals and ignores other
potentially important ones?”, and “How many data points are
required until salient peaks and patterns emerge?” Our future
work will address these questions through a live deployment
on a MOOC platform such as edX. We will also explore other
types of interaction data such as active bookmarking and con-
tent streams such as voice to enrich video-based learning.

Adaptive video UI: The data-driven techniques introduced in
this paper open opportunities for more adaptive and person-
alized video learning experiences. In this paper, we demon-
strated how collective viewership data can change the video
interface dynamically, influencing the physical scrubbing be-
havior, search ranking algorithm, and side-by-side frame dis-
play. We envision future video UIs that adapt to collective
usage. Also, incorporating interaction data can lead to per-
sonalized video learning. Because interaction data is likely
to represent an average learner, comparing personal history
traces against collective traces may help model the current
user more accurately and improve personalization.

Beyond MOOC-style lecture videos: While this paper used
MOOC-style lecture videos for demonstration, we believe our



techniques can generalize to other types of educational videos
such as programming tutorial screencasts, how-to demonstra-
tion videos, and health education videos. We expect to apply
the techniques introduced in this paper to these videos.

CONCLUSION
This paper introduces a novel concept of designing video
interaction techniques by leveraging large-scale interaction
data. We present three sets of data-driven techniques to
demonstrate the capability of the concept: 2D, non-linear
timeline, enhanced in-video search, and a visual summariza-
tion method. In a lab study, participants found interaction
data to draw attention to points of importance and confusion,
and navigated lecture videos with more control and flexibility.

Ultimately, the design techniques we have presented provide
enriched alternatives to conventional video navigation. We
envision engaging a community of learners in creating a so-
cial, interactive, and collaborative video learning environ-
ment powered by rich community data.
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10. Dieberger, A., Dourish, P., Höök, K., Resnick, P., and Wexelblat, A.
Social navigation: Techniques for building more usable systems.
Interactions 7, 6 (Nov. 2000), 36–45.

11. Ding, W., and Marchionini, G. A study on video browsing strategies.
Tech. rep., College Park, MD, USA, 1997.

12. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle: capture,
exploration, and playback of document workflow histories. In UIST ’10
(2010).

13. Guo, P. J., Kim, J., and Rubin, R. How video production affects student
engagement: An empirical study of mooc videos. In L@S ’14 (2014),
41–50.

14. Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T. Edit
wear and read wear. In CHI ’92 (1992), 3–9.

15. Hou, X., and Zhang, L. Saliency detection: A spectral residual
approach. In CVPR ’07 (2007), 1–8.

16. Hurst, A., Mankoff, J., Dey, A. K., and Hudson, S. E. Dirty desktops:
Using a patina of magnetic mouse dust to make common interactor
targets easier to select. In UIST ’07 (2007), 183–186.
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ABSTRACT
Effectively planning a large multi-track conference requires
an understanding of the preferences and constraints of or-
ganizers, authors, and attendees. Traditionally, the onus of
scheduling the program falls on a few dedicated organizers.
Resolving conflicts becomes difficult due to the size and com-
plexity of the schedule and the lack of insight into commu-
nity members’ needs and desires. Cobi presents an alter-
native approach to conference scheduling that engages the
entire community in the planning process. Cobi comprises
(a) communitysourcing applications that collect preferences,
constraints, and affinity data from community members, and
(b) a visual scheduling interface that combines communi-
tysourced data and constraint-solving to enable organizers to
make informed improvements to the schedule. This paper
describes Cobi’s scheduling tool and reports on a live deploy-
ment for planning CHI 2013, where organizers considered in-
put from 645 authors and resolved 168 scheduling conflicts.
Results show the value of integrating community input with
an intelligent user interface to solve complex planning tasks.
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INTRODUCTION
Creating a compelling schedule for a large conference is a dif-
ficult task. Hundreds of accepted submissions must be sched-
uled into sessions across multiple days and rooms, while ac-
counting for the multi-faceted preferences and constraints of
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Figure 1. A small group of organizers and associate chairs create a pre-
liminary CHI program on paper.

organizers, authors, and attendees. Organizers aim to cre-
ate thematic sessions, avoid scheduling related papers or the
same presenters in opposing sessions, and generally make the
program interesting for attendees with different interests.

To better understand this challenge, we observed the schedule
creation process for CHI, the largest human-computer inter-
action conference: CHI 2013 received over 2260 submissions
and accepted more than 500 to be scheduled in 16 simultane-
ous sessions spanning four days. Scheduling CHI involves
two stages. Once papers are accepted, a small group of as-
sociate chairs help the conference organizers to roughly cre-
ate categories and suggest sessions. Over the next two days,
the organizers and a few assistants build a rough preliminary
schedule (see Figure 1). The process is paper-based, collab-
orative, and time-consuming; its output is highly dependent
upon the specific knowledge of the individuals in the room.
In stage two, organizers refine the rough schedule to create
the final program. They attempt to resolve conflicts, handle
stray papers, respond to last minute changes, and generally
look for ways to improve the program. The organizers use
a script to check that no presenter is scheduled to be in two
places at once, but otherwise, all changes are made manu-
ally. Interviews with past organizers revealed that the process
was extremely time-consuming, and that resolving conflicts
was “painstaking” due to schedule complexity and the lack
of feedback on whether changes resolved existing conflicts or
created new ones.

Despite organizers’ best intentions and efforts, previous
CHI programs often contained incoherent sessions, similarly-



Figure 2. Cobi’s scheduling tool consists of the top panel (top), the sidebar (left), and the unscheduled panel and main schedule table (right).

themed sessions that run in parallel, and author-specific con-
flicts. Several aspects of the process contribute to these prob-
lems. First, due to the organic nature of how organizers make
connections between papers in stage one, many sessions have
odd papers mixed in. Second, because the process does not
capture affinities between papers in different sessions, it is
difficult for organizers to make scheduling changes that lead
to more cohesive sessions. Third, organizers are often un-
aware of the preferences of authors and attendees. This can
lead to sessions of interest being scheduled at the same time.
Finally, the lack of tools for managing constraints and the
sheer size of the schedule make it difficult for organizers to
make informed decisions when finalizing the schedule.

Cobi addresses these challenges by drawing on the people and
expertise within the community, and embedding intelligence
for resolving conflicts into a scheduling interface. The Cobi
system consists of a collection of communitysourcing appli-
cations that elicit preferences, constraints, and affinity data
from program committee members and authors, and an intel-
ligent scheduling tool that provides organizers with helpful
context and suggestions for improving the schedule. By en-
gaging the community in the planning process, Cobi exposes
the preferences and constraints of its members to the organiz-
ers and makes the planning process more transparent.

Cobi’s scheduling tool (Figure 2) integrates community pref-
erences and constraints with constraint-solving intelligence
into a new kind of community-informed mixed-initiative sys-
tem. The interface helps organizers visually spot problems
and resolve them in the schedule. It highlights general, high-

level conflicts such as scheduling a presenter in two opposing
sessions. It also exposes more detailed, communitysourced
preferences such as scheduling together papers that authors
feel fit well in a session with their paper. When manipu-
lating the schedule (e.g., assigning, moving, and swapping
sessions, papers, and session chairs), the interface uses a con-
straint solver to help organizers make informed decisions by
recommending edits that best improve the schedule and visu-
alizing the consequences of potential edits. Organizers drive
the system by applying their personal knowledge, choosing
which problems to focus on, and making final decisions.

We deployed the Cobi system for planning CHI 2013. We
recruited associate chairs to group sets of related papers, and
authors to identify papers of interest and those that fit well
in a session with their own paper. The process collected
1722 paper affinities from 64 associate chairs and 8651 pref-
erences and constraints from 645 authors (covering 87% of
accepted submissions). In addition, we asked candidate ses-
sion chairs to submit their representative papers to determine
their fit with sessions. The organizers used Cobi’s scheduling
tool to improve the preliminary schedule and assign session
chairs. The tool helped the organizers resolve 168 conflicts as
they created the final schedule. They found that the schedul-
ing tool greatly simplified conflict resolution, while allowing
them to combine their own knowledge with the machine in-
telligence and the community’s input.

The paper proceeds as follows. We first discuss related work
in communitysourcing and conference scheduling. We then
share findings from a preliminary study and identify key de-



sign goals. We present Cobi’s scheduling tool, focusing on
the integration of community data, machine intelligence, and
end-user interface. We report on our deployment at CHI 2013
and discuss the key lessons learned. The paper concludes
with notes on future research directions.

RELATED WORK
Our work seeks to tailor tasks to the inherent incentives, in-
terests, and expertise of diverse groups within a community.
We draw from the broad literature on encouraging commu-
nity contributions, both in online [10] and physical spaces [5],
and on tasks ranging from collecting scientific data [4] to co-
designing public transportation services [16]. In our work,
community members contribute to solving a specific prob-
lem whose solution affects themselves and the community at
large. With Cobi, we are exploring incentives, methods, and
interfaces for collecting and incorporating multidimensional
preferences and constraints from large numbers of individuals
within a community into a single, cohesive outcome.

Previous research introduced mixed-initiative solutions to
complex tasks such as aircraft scheduling [3] and manufac-
turing task scheduling [7] by modeling expert knowledge. To
this line of research, Cobi contributes a community-driven
approach, which raises the unique design challenges of in-
centivizing community members to express preferences, and
mediating, encoding, visualizing, and acting on noisy and di-
verse community input. Interactive machine learning (IML)
approaches such as CueT [1] and E-mazing [15] use a combi-
nation of human labor and machine learning. However, they
take opposite approaches to the problem. IML supervises an
algorithm with human input, while Cobi helps conference or-
ganizers make informed decisions with computations shown
as visual feedback.

Automated scheduling is a well-studied problem in both com-
puter science and operations research. Specific to conference
scheduling, Sampson et al. [13] introduced formulations for
maximizing the number of talks of interest attendees can at-
tend. For the related problem of course scheduling, Murray et
al. [11] introduced formulations for minimizing student and
instructor conflicts subject to scheduling constraints. While
automated scheduling is appropriate when the parameters and
constraints of the optimization problem are well-specified,
our interviews with past CHI organizers show that they at-
tempt to tackle soft constraints and other tacit considerations.
With Cobi’s mixed-initiative, interactive optimization [6, 14],
the machine plays a supporting role, providing intelligence
and feedback for detecting problems and resolving conflicts.
Organizers can thus better interpret and act on the commu-
nity’s input, which can be overwhelmingly rich, subjective,
and incomplete at the same time.

Jacob et al. [8] developed a tangible interface for manipu-
lating a conference schedule and checking constraints on a
physical grid layout. Cobi extends this approach by account-
ing for input from the larger conference community.

There are several commercial systems for conference and
course scheduling. One example is Confex’s scheduling tool
(confex.com), which detects and highlights hard conflicts

in the schedule (e.g., scheduling a presenter in simultane-
ous sessions) but makes no suggestions about how to resolve
them. Another example is UniTime (unitime.org), which
first computes an optimal course schedule to minimize con-
flicts and then allows a user to make fine-grained adjustments
while seeing the effect on conflicts. Our work presents an al-
ternative approach in which the user is in control at all times
while the system detects conflicts and provides suggestions
for resolving them.

PRELIMINARY STUDY AND DESIGN GOALS
Our research team conducted hour-long semi-structured inter-
views and exchanged emails with five past and current CHI
organizers, two of whom are co-authors on this paper. Dis-
cussions centered around the planning process at CHI and fo-
cused in particular on existing challenges and potential so-
lutions. Conversations revealed three high-level goals that
drove the design of the Cobi system and its scheduling tool:

Understanding paper affinities. Organizers stressed that
“papers fit into sessions in complex ways” and that “getting
a session together that makes sense is hard.” While the in-
person meeting created sessions that are mostly cohesive, or-
ganizers still needed to break open some sessions. Organizers
noted that this is a “major pain point” and that it is “very hairy
to break up a session” because swapping a paper with another
paper requires each paper to fit well in the other’s session.
In order to capture paper affinities across sessions, organiz-
ers noted that you would need contributors “knowledgeable
enough in the field to know that papers should or shouldn’t
be in the same session.” Cobi draws on input from paper au-
thors, who we hypothesize would know what other papers fit
well in a session with their own.

Detecting conflicts automatically and providing feedback
for resolving them. Organizers found it particularly difficult
to know the consequences of moving a paper or session in the
schedule, which requires reasoning about the conflicts that
would be created in addition to those that would be resolved.
One organizer noted that she “would (painstakingly) solve
those [conflicts and] re-run [a constraint-checking script],
usually showing that the problems I had solved had gener-
ated other author conflicts.” In order to avoid thrashing and
frustration, Cobi recommends moves and swaps that resolve
the most conflicts and allows organizers to preview the effect
of possible edits on conflicts.

Keeping the human in control. While an automated con-
straint solver can be used to resolve known conflicts, previ-
ous organizers felt that taking a purely automated approach
would be impractical and would fail to capture the “many se-
mantic constraints that are hard to express using machine un-
derstandable ways.” The organizers also stressed the impor-
tance of being able to make sense of the schedule so that they
can apply their knowledge and weigh the various demands of
the community while scheduling.

COBI’S SCHEDULING TOOL
Once the program committee determines the accepted papers,
Cobi’s communitysourcing applications collect preferences,
constraints, and affinity data from community members. This

confex.com
unitime.org


Example Constraints & Preferences Possible Source Rationale

Papers that don’t fit well together shouldn’t
be in the same session

Authors Authors know what papers are related to theirs and care about which
end up in a session with their own.

Papers of mutual interest shouldn’t be in op-
posing sessions

Attendees Knowing what attendees want to see can avoid scheduling talks of
interest at the same time.

Chairs’ area of research should match the
topic of their session

Chairs’ papers We can collect papers from potential session chairs and check if they
are related to the papers in a session.

Table 1. Examples of preferences and constraints encoded in Cobi that can be collected from community members.

input is then encoded and presented in Cobi’s scheduling tool
to help users (conference organizers) resolve conflicts and im-
prove the schedule.

Encoding Preferences and Constraints
Cobi supports preferences and constraints over attributes at
three entity levels: sessions, papers, and chairs. For exam-
ple, a constraint may specify sessions that should not be con-
current (e.g., “sessions of interest to the ICT4D community
should not oppose one another”), and a preference may state
that a chair is a good fit for a session (e.g., “James Sysmaster
is a good fit for the systems session”). At a high level, the
goal is to create a schedule that violates few constraints and
meets many preferences.

In early prototype testing, we found that most constraints and
preferences of interest can be stated as conditions on a single
entity or a pair of entities (e.g., “George Latewaker prefers to
chair sessions in the afternoon” or “sessions on crowdsourc-
ing and social computing should not oppose one another”).
Further simplifying matters, paired-entity constraints of in-
terest tend to describe relations over entities when they are in
the same time or room, suggesting that we need only check
conflicts between entities in such cases. Currently Cobi sup-
ports encoding paired entity constraints of the form “x and
y should [not] be in the same session” and “w and z should
[not] oppose one another,” where x and y can be papers and
chairs and w and z can be sessions, papers, and chairs.

Some constraints (and likewise preferences) may be system-
defined, which refers to high-level, overarching constraints
that can be stated using data from a submission management
system (e.g., “a presenter should not be scheduled in oppos-
ing sessions”). Other constraints may be community-defined,
which refers to more specific and perhaps more subjective
wishes stated by community members (e.g., “Sessions A and
B should be scheduled apart because Mary Liker is interested
in papers in both sessions”). Table 1 provides examples of
community constraints and preferences encoded in the cur-
rent Cobi prototype and potential sources of community input
that can be used to instantiate them.

While encoding system-defined constraints is straightfor-
ward, encoding community-provided constraints requires
taking into account the potential sparsity, diversity, and sub-
jectivity of the collected data. We may collect thousands of
preferences and constraints, some of which are in direct con-
flict with others (e.g., an author may feel that his paper fits
well in a session with another paper whose author disagrees).
To account for such issues, an input-mediation layer aggre-
gates responses before adding a constraint or preference in

Cobi. For instance, we add a preference for two papers to be
in the same session, only if the majority of people providing
data about both papers agreed that they are related. We re-
strict two papers from being in opposing sessions only when
many people express interest in seeing both papers.

In addition to managing the complexity of subjective data, the
input-mediation layer can help focus the user’s attention on
salient constraints that matter to many community members.
It can also be used to capture variance in the data and note
an absence of data, so that the user can know when not to
rely excessively on community input. The goal is to capture
the community input at a level where the user can best act
upon it: too little mediation makes it difficult to understand
the community’s wishes, and too much may end up hiding
some of the useful information contained in the data.

Scheduling Interface
Cobi’s scheduling tool (Figure 2) enables manipulating, scan-
ning, and reviewing the schedule with support for conflict res-
olution and multi-faceted views. The interface keeps the user
in control and provides advice on entity moves and swaps. It
consists of three components: the top panel, the sidebar, and
the unscheduled panel and main schedule table.

The top panel (Figure 2, top) allows the user to search for
entities and displays information about the current operation.
The sidebar (Figure 2, left) contains view modes and faceted
browsing options to help the user analyze the current sched-
ule. Conflicts and Preferences display conflicts and satisfied
preferences in the current schedule and their counts. They are
separated by type and grouped based on their severity. Counts
update immediately following any change to the schedule,
and provide immediate feedback on the effects of the user’s
actions on conflicts.

View options display different aspects of the schedule and
help the user spot issues requiring attention. For example, the
default Conflict view shows icons for conflicts that involve
entities within a session. (Figure 2, right). Clicking on the
Duration view option displays the length of each session, and
allows the user to quickly identify ones with too many or too
few papers. Personas and Communities allow the user to skim
the schedule for various interest-based subgroups and check
if the schedule is well-distributed across subgroups. The His-
tory option keeps track of all the scheduling operations and
who performed them.

The unscheduled panel displays unscheduled sessions, pa-
pers, and session chairs. In addition to holding the entities
to be scheduled, in initial testing we found that users needed



(a) View Mode

(b) Move Mode

Figure 3. Inner-session view in view mode and move mode. A recom-
mended paper move is highlighted in green.

a scratch space to construct a session without having to worry
about where it is placed in the schedule. The unscheduled
panel serves as this scratch space.

The main schedule table displays the entire schedule in a time
table (Figure 2, right). Each cell displays a session name and
additional information based on the view option (e.g., Con-
flicts). Clicking on a session displays details of the session
(Figure 3(a)), which includes conflict information and details
on its papers and chair. Here the user is provided with options
for scheduling entities, unscheduling entities, swapping enti-
ties, reordering papers, editing titles, and locking sessions.

When working to resolve conflicts related to an entity, the
user can click Propose Move on a session, paper, or session
chair and enter move mode, which displays previews of the
consequences of moving to an empty slot or swapping with a
candidate entity (Figure 4). Each target cell displays the net
change in the number of conflicts for swapping with entities
in the cell, and cells highlighted in green represent recom-
mended moves that would lead to the largest reduction in the
number of conflicts. The user can scan different options, and
click on cells to examine in detail the consequences of poten-
tial moves (Figure 3(b)).

Figure 4. Move preview displays the change in the number of conflicts
and preferences should the user swap the source session (shown in yel-
low) with each of the candidate target sessions. The system recommends
sessions that minimize conflicts by highlighting them in green.

Figure 5. In move mode, conflict details preview the consequence of
making a swap. By clicking on individual icons and following naviga-
tion links, the user can understand the specific conflicts and preferences
that would be added or removed by making this swap.

For each empty target or target entity, Cobi displays an icon
for each conflict that would be added or removed at the source
and target by making the move. Clicking on the icon shows
detailed information about the selected conflict or preference
(Figure 5). Cobi adds links to all entities involved in the con-
flict or preference, so that clicking on the link highlights the
selected entity. Since conflicts created or removed may also
involve entities other than those being moved (e.g., a conflict-
ing paper in an opposing session), this helps the user carefully
understand which conflicts and preferences will be violated or
met for which entities. Upon making a decision, the system
displays the change briefly to allow the user to make sense
of their decision, and returns to the view mode with updated
conflict counts in the sidebar.

By using a combination of overview and detailed views,
Cobi’s scheduling tool aims to support quick scans as well
as detailed investigations. It leaves the user in control of se-
lecting which entities to work on and in what order, while
making potential problems in the schedule evident via the
conflict view and other view options. When making sched-
ule changes, the system helps the user narrow down the set
of candidates to consider, and understand visually the con-
sequences of all possible moves on conflicts in the schedule.
Since communitysourced data may be noisy or incomplete
and the user may weigh various factors beyond the encoded
preferences and constraints, Cobi leaves it to the user to make
final scheduling decisions by applying their knowledge and
making sense of recommendations from the tool.

Implementation
Cobi associates with each type of preference or constraint a
lookup table containing pairs of entities that would be in con-



flict if particular conditions are met. Since Cobi only encodes
constraints within a timeslot, conflict checking and resolu-
tion can be performed by simply taking pairs of entities in
the same timeslot in the schedule and using the lookup ta-
bles to determine if they are in conflict. When computing
the consequences of moves and swaps, the system uses the
same lookup tables to determine which conflicts involving the
source and target entities would be added or removed.

To help the user make sense of potential conflicts in the sched-
ule, each constraint is associated with a template message that
is instantiated with the entities in conflict when a conflict is
detected. For example, a template message may state that
“authors noted that x and y do not fit in the same session”
and be instantiated with papers x and y that are in the same
session and in the corresponding lookup table.

The scheduling tool allows multiple users to collaborate syn-
chronously or asynchronously. The system keeps consistent
transaction records on the database and pushes changes to
users as they interact with the system. In cases of simultane-
ous, conflicting edits, the interface displays a message to the
user with the failed operation, performs a local rollback, and
updates with changes other users have made. Cobi also pro-
vides a polling API for other systems or interfaces to access
its schedule state, which is useful when alternative visualiza-
tions or output devices are available (as in our deployment).
The frontend web interface is built with HTML5, CSS3, and
Javascript using the jQuery and Bootstrap toolkits.

DEPLOYMENT AND EVALUATION
We deployed the Cobi system for scheduling CHI 2013. Prior
to deployment, a small group of organizers and associate
chairs met in early December to produce a preliminary sched-
ule by clustering accepted papers and making initial ses-
sions. We deployed Cobi’s communitysourcing applications
between January 6 and February 12, 2013 to collect prefer-
ences, constraints, and affinity data from associate chairs, au-
thors, and session chairs. This data was then encoded into
Cobi’s scheduling interface. Organizers used Cobi over a pe-
riod of 42 days from February 10 to March 23, 2013. They
took into account the community input, resolved session, pa-
per, and session chair conflicts, and generally worked to im-
prove the initial schedule.

To better understand the scheduling experience with Cobi, we
collected quantitative and qualitative data from the organiz-
ers. We logged all operations the organizers executed using
Cobi. A log entry includes the user responsible for the action,
the action type, affected sessions or papers, and a snapshot of
conflict counts as a result of the action. At the end of the de-
ployment, we reflected on the process with each of the three
CHI 2013 organizers individually (two are co-authors of this
paper). Each session lasted 60-120 minutes, and was audio-
recorded for later analysis. The organizers talked about high-
level goals in scheduling, walked through the scheduling pro-
cess, and described specific subtasks they were involved in.
During the discussion they also tested the latest version of the
Cobi scheduling tool that encoded the authorsourcing data,
and provided feedback on the experience and usability.

...

...
Figure 6. Authors were presented with a custom list of 20 papers and
asked to judge which are related to their paper or of interest to them.

System-defined Preferences and Constraints
For sessions and papers, we used data from the submission
management system to encode two constraints that sought to
avoid scheduling paper authors in opposing sessions and ses-
sions of interest to a persona in opposing sessions. The for-
mer constraint seeks to ensure that no presenter has to be in
two places at once and that all authors can see their papers
presented. The latter constraint seeks to keep sessions on a
particular area of interest apart in the schedule.

For session chairs, we used data from the submission manage-
ment system to encode constraints stating that chairs should
not have papers in opposing sessions (for the same reason as
authors), and that they should not chair sessions in which they
have a paper (to avoid perceived conflict of interest).

Collecting and Encoding Community Input
We deployed three communitysourced initiatives that col-
lected input from associate chairs, authors, and session chairs.
To better understand paper affinities, we first recruited as-
sociate chairs to cluster papers in their area of expertise.
The process collected 1722 paper affinities from 64 asso-
ciate chairs (ACs). We then invited authors of accepted pa-
pers to identify papers that would fit well in a session with
their own and that they are interested in seeing at CHI (Fig-
ure 6). To produce a small list of papers for authors to judge,
we seeded suggestions based on affinities identified by ACs
and by running TF-IDF (Term Frequency - Inverse Document
Frequency) [9] comparisons on paper titles and abstracts. The
process collected 8651 preferences and constraints from 645
authors, which covered 87% of accepted submissions. The
high response rate suggests that authors were inherently inter-
ested in seeing their paper in a session with related papers and
thus willing to contribute. For more information on the com-
mittee and authorsourcing stages, as well as empirical com-
parison of affinity creation methods, see André et al. [2].

Taking the collected authorsourcing data, Cobi’s input medi-
ation layer filtered and aggregated preferences and conflicts
so that only those submitted by multiple authors were en-
coded. For papers, this led to encoding 923 constraints of the
form “papers x and y are of mutual interests and shouldn’t be
scheduled in opposing sessions,” 651 constraints of the form
“papers x and y do not fit well in the same session,” and 805
preferences of the form “papers x and y are good in the same
session.” For authors who also served as session chairs, we



Figure 7. Representative subtasks during the CHI 2013 scheduling process are shown with associated operation types from the interface log. For
example, the “Resolve author conflicts” subtask is associated with a cluster of session swap operations. Session, paper, and chair edits indicate scheduling
operations involving those entities. Meta edits indicate non-scheduling operations, such as editing session titles and locking or unlocking sessions.

also added 243 constraints of the form “chair x is interested
in a paper y in an opposing session.” Due to time constraints
in the deployment schedule, only the chair-related constraints
were visible to organizers in the version of Cobi’s scheduling
tool they were using. For resolving other community-defined
author conflicts, the organizers relied on visualizing the au-
thorsourced data externally without the preview and recom-
mendation support from Cobi.

In addition to the authorsourcing data, we collected represen-
tative paper samples from 165 potential session chairs, which
we used to compute affinity measures on how well they may
fit as chairs for a session. Using TF-IDF similarity between
each session chair’s papers and each session’s papers, we pro-
duced affinity scores between chairs and sessions. Cobi en-
coded the affinity information as a preference for assigning a
chair to a session when they are among the top 5 by affinity
score, and a constraint when they are out of the top 25. To
compute an initial assignment, we solved a linear optimiza-
tion program to compute an assignment of session chairs that
maximizes the sum of affinity scores.

Scheduling Process
Cobi was used in a number of scheduling meetings that in-
volved the organizers and other collaborators. The version
of Cobi that organizers used supported all session, paper, and
session chair-related scheduling operations. It provided pre-
views and recommendations for system-defined constraints,
but as mentioned before, did not incorporate the authorsourc-
ing data. For some of the meetings, Cobi was used in conjunc-
tion with a large wall display that visualized community data
along with detailed session information and supported mul-
tiple users simultaneously exploring the schedule. The wall
display did not include intelligence for resolving conflicts; the
organizers relied on Cobi for conflict resolution and making
actual changes to the schedule.

During the 42-day deployment, the three CHI 2013 organiz-
ers made 815 scheduling operations using Cobi’s scheduling

interface. We reconstructed the scheduling process by con-
necting organizers’ description of the process with the inter-
face usage log. Figure 7 shows the variety of subtasks that or-
ganizers faced during the scheduling process. By decompos-
ing the scheduling problem into subtasks, organizers could
focus on a particular aspect of the schedule at a given time.

The scheduling process proceeded in three high-level phases.
In phase one (February 10 to February 17), organizers took
the preliminary schedule from the technical program meeting
and worked to resolve conflicts from violated system- and
community-defined constraints. Organizers first moved pa-
pers so as to construct more coherent sessions based on the
collected feedback from authors on which papers fit well in a
session with theirs. Organizers then resolved all author con-
flicts by swapping sessions. While this eliminated nearly all
of the existing system-defined conflicts, many sessions con-
tained too few or too many papers. Organizers then moved
papers to ensure that all sessions were at or under 80 minutes.

At the end of phase one, organizers had a mostly complete
program. In phase two (February 17 to February 28), they
worked to enhance themes and fine-tune the schedule to ad-
dress special requirements. On the room level, they placed
related sessions in the same or nearby rooms and sessions
with awards in larger rooms. On the paper and session level,
they distributed awards across sessions and reordered papers
within a session so that they are presented in a logical pro-
gression. These subtasks generally did not involve conflict
resolution, but the organizers used Cobi’s conflict preview to
ensure that changes would not introduce new conflicts. The
organizers also made 122 session title edits to better capture
and promote sessions and the papers within.

Once the organizers finalized the program, they worked in
the final phase (March 1 to March 23) on assigning session
chairs. Organizers first moved chairs out of sessions in which
they had papers and corrected assignments where the chair
was a poor fit. They then announced the initial assignments



Table 2. For all constraint or preference types in our deployment, the table shows the related entity, the data source for encoding, the severity level
displayed in the tool, the total number of encoded items if authorsourced, the violation or satisfaction count from the preliminary schedule, the count in
the finalized schedule, and the change in the count (highlighted if improved). There remains no conflicts for 3 of the 4 high severity types (highlighted).
Soft constraints (medium severity) have more violations, which shows that scheduling involves multiple factors in addition to conflict resolution.

Figure 8. Change in system-defined conflicts over time. The organizers
resolved 30 author conflicts during initial session making. When they
were adjusting session lengths and balancing awards, the conflict count
temporarily increased, but they resolved all of them shortly after. The
organizers introduced three persona conflicts while they were switching
rooms, but they chose not to resolve these conflicts due to other factors.

to the session chairs, who provided additional feedback on fit
and conflicts that the chairs resolved subsequently.

Conflict Resolution
The preliminary schedule from the technical program meet-
ing included 238 conflicts. Organizers resolved 168 of them
during the scheduling process. Table 2 summarizes changes
in conflict counts for each constraint and preference type.

Schedule creation (phase one and two)
Organizers resolved all but four conflicts from system-defined
constraints (Figure 8). Shortly after making more cohesive
sessions (but in the same meeting), the organizers eliminated
all 30 author conflicts in 29 minutes. This ensures that no pre-
senter has papers in parallel sessions and that co-authors can
attend all sessions that contain their papers. Persona conflicts
were mostly absent because the in-person meeting to gener-
ate the initial schedule already took personas into account by
scheduling sessions of interest to the same persona apart.

Organizers also resolved many of the community-defined
conflicts (Figure 9). 21 of the 40 “papers of mutual interest

Figure 9. Change in community-defined conflicts over time. Organizers
first attempted to make more coherent sessions with papers that did not
fit well in the same session. After switching rooms, they resolved 11
conflicts to avoid having simultaneous sessions with similar topics.

in opposing sessions” conflicts in the initial schedule were re-
solved (53%), and 87 of the 129 “papers that do not fit well in
the same session” conflicts were resolved (67%). Note that
organizers made these changes using community-provided
data and Cobi’s paper-level operations, but without the pre-
views and recommendations.

Session chair assignment (phase three)
During phase three (Figure 10), organizers resolved all 27
conflicts based on system-defined chair constraints. 6 con-
flicts involved chairs with papers in opposing sessions and 21
conflicts involved chairs with papers in their own session.

Reflection
Discussions with organizers revealed a number of key points
on how Cobi supports the conference scheduling process and
helps to resolve conflicts:

Simplifying conflict resolution with preview and feedback
The organizers commented that Cobi “trivialized conflict res-
olution” and was “a major stress reducer.” Organizers noted



Figure 10. Change in session chair-related conflicts over time. Session
chair assignment took place near the end of the scheduling process. The
organizers resolved a majority of conflicts from the initial assignment by
considering the individual constraints they collected from chairs.

that Cobi’s visual previews aided in understanding the con-
sequence of making a move, and immediate feedback accel-
erated conflict resolution. One organizer described the expe-
rience of resolving system-defined conflicts as follows: “It
went really really fast, because we see a session that has con-
flicts, and the suggestions Cobi was giving were really good,
and then we swapped things. It was almost a no brainer.”

Enabling mixed-initiative problem solving
Cobi allowed organizers to use constraint-solving intelligence
alongside their own knowledge of the schedule and of tacit
constraints to improve the program. One organizer com-
mented that “I was by and large driven by what Cobi was
suggesting. As you make progress you can then progressively
integrate other criteria that are not explicit in the system.” In
swapping sessions to resolve author conflicts, another orga-
nizer noted that he used Cobi’s conflict previews to find good
sessions to swap with that were in the same room, so as to re-
solve conflicts while maintaining the themes that were loosely
assigned to rooms during the in-person meeting. Cobi also
allowed organizers to be aware of causing potential conflicts
even when they weren’t working to resolve them. “We had
Cobi up all the time to make sure that when we had a solution
that we thought worked from the affinity point of view, that it
didn’t introduce new conflicts.”

An important aspect of any mixed-initiative system is the
user’s trust in system recommendations. Organizers noted
that their trust in Cobi grew over time. “For those of us who
returned to the problem on multiple occasions, with a diverse
set of short-term colleagues with varying expertise who came
in to help, I think our appreciation of Cobi actually grew. We
were looking at C&B [contribution & benefit] statements, as
well as abstracts, and double-checking with our visitors, and
Cobi kept coming up with great suggestions. So it stopped
being based on following Cobi because it dealt with the ar-
eas that we knew, and became more fundamental, because it
held up under scrutiny from a variety of visitors and when we
delved into the details of various papers.”

Intelligence powered by community input
Organizers commented on the value of having authorsourc-
ing data during the scheduling process. In previous years,
“authors saw their paper move from a slot they liked to a time
they didn’t and talked to the TP chairs.” But this year, “we
had virtually none of this. Authors were asked for input, most
gave it, we tried hard to accommodate them, and almost no-
body complained.”

Organizers noted that authorsourcing data was particularly
useful for understanding the affinity among papers beyond
the initial sessions created at the TP meeting. “It helped with
the more subtle issue of what happens when a paper moves
out of a ‘happy session’. Pairs of papers with a strong affinity
are not in conflict if in the same session, and become con-
flicted if they move out of that session, but stay in the same
time slot. This got lost over and over again in previous years
and is the big win this year.”

The organizers used a wall display to visualize authorsourc-
ing data. Since the version of Cobi that organizers used at
the time did not incorporate this data, organizers had to man-
ually identify paper swaps that lead to more cohesive ses-
sions. Later, when asked to test a version of Cobi’s scheduling
tool that encoded authorsourced preferences and constraints,
organizers noted that having Cobi able to propose and re-
solve community-defined conflicts would have been valuable:
“That is precisely what I was doing by hand with the author-
sourcing data. And [the blue icon showing community pref-
erence] is absolutely useful.” “I think if we had this earlier
when we were doing the first round of improving the sessions,
we would certainly have used it.”

Weighing priorities and deliberately leaving conflicts
If Cobi makes it easy to resolve conflicts, why does the final
schedule still include 70 conflicts? When asked this question,
an organizer replied that for many of the remaining conflicts
“we felt that they were minor or we decided that they weren’t
really conflicts.” Since there are multiple factors that affect
scheduling decisions, satisfying all constraints is sometimes
not possible. An organizer commented that “it’s also a ques-
tion of opinion in some cases.” In these cases the organizers
made the final decision, which corresponds to Cobi’s design
goal to support decision-making while keeping the user in
control at all times.

Mediating and visualizing community input
While the authorsourcing data provided a rich perspective on
the community’s preferences and constraints, the data was
also sparse and noisy. In resolving authorsourced conflicts,
organizers strived to understand the complexity of commu-
nity input. Organizers used their wall display to visualize
the raw community data, and attempted to account for the
variance, quality, and weight of the data when making deci-
sions. While organizers appreciated Cobi’s aggregating au-
thorsourcing data to remove noise and highlight salient con-
flicts, they also noted that visualizing the raw data was help-
ful and gave them more flexibility in using community input.
Based on this feedback, we plan to develop other methods for
mediating and visualizing community input, that can reflect
its variance and quality while also maintaining simplicity.



Visualization improvements
Organizers noted a few areas for potential improvement in
Cobi’s visualization. A major issue raised was that Cobi
can only display the details of one session at a time. While
scheduling, organizers found that they often wanted to com-
pare multiple entities. One organizer noted that “having to
sequentially navigate multiple items worsens the experience
a bit.” To address these comments, we are currently exploring
alternative visualizations for displaying detailed information
for multiple sessions and are considering applying focus plus
context techniques such as those found in TableLens [12].
The challenge is in providing additional context without dis-
torting the schedule table in ways that hinder sensemaking.

Another solution to the visualization challenge is to leverage
more space when available. For example, the wall display the
organizers used for planning CHI 2013 was large enough to
visualize detailed submission information in the global view.
It allowed a group of people to collaborate on scheduling sub-
tasks, although it lacked conflict resolution capability. A pos-
sible extension for Cobi is to directly connect to a large dis-
play so as to facilitate collaboration and enable the micro-
outsourcing of scheduling tasks.

CONCLUSION AND FUTURE WORK
The Cobi system integrates community process, constraint-
solving intelligence, and end-user interface to help organiz-
ers plan large conference schedules. Cobi’s scheduling tool
encodes community input as preferences and constraints, and
helps organizers resolve conflicts by providing previews and
recommendations when editing the schedule. A live deploy-
ment of Cobi for planning CHI 2013 demonstrated the effec-
tiveness of collecting preferences and constraints from com-
munity members, and of the scheduling tool for simplifying
conflict resolution and supporting informed decision-making.

The challenges of conference scheduling—understanding pa-
per affinities, knowing what people want, and managing the
solution complexity—are shared by conferences beyond CHI.
We believe the approach presented in this paper general-
izes to scheduling other academic conferences, and also to
other events such as trade shows, film festivals, or university
courses. More generally, the success of Cobi’s deployment
posits community-informed, mixed-initiative interaction as a
novel approach for solving optimization problems, for which
the goal is to collect important data from the community, use
computation to guide the solution, and allow users to apply
their tacit knowledge.

In future work, we plan to explore ways to further engage the
community in the scheduling process. We wish to provide a
generalized method for community members to express arbi-
trary constraints and preferences (e.g., travel plans and spe-
cial considerations). We are currently working on an inter-
active interface that allows community members to specify a
broader range of preferences and constraints. The collected
input can then be encoded like other community-defined con-
straints, so that conflicts can be easily resolved using Cobi.

Another direction for future work is to extend the role of
the community beyond providing data. Can hundreds of

people collaboratively make sessions and resolve conflicts?
We imagine that tools can support new ways of communi-
cating, collaborating, and incorporating different opinions.
Pursuing this research direction can lead to a new family
of community-supported mixed-initiative systems that better
mediates and visualizes diverse input from the community.
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