
MOOClets: A Framework for Dynamic Experimentation and
Personalization

Joseph Jay Williams
Harvard University

Cambridge, MA, USA
joseph_jay_williams@harvard.edu

Anna N. Rafferty
Carleton College

Northfield, MN, USA
arafferty@carleton.edu

Samuel Maldonado
San Jose State University

San Jose, CA, USA
samuel.maldonado@sjsu.edu

Andrew Ang
Harvard University

Cambridge, MA, USA
andrew_ang@harvard.edu

Dustin Tingley
Harvard University

Cambridge, MA, USA
dtingley@gov.harvard.edu

Juho Kim
KAIST

Daejeon, South Korea
juhokim@cs.kaist.ac.kr

ABSTRACT
Randomized experiments in online educational environments
are ubiquitous as a scientific method for investigating learning
and motivation, but they rarely improve educational resources
and produce practical benefits for learners. We suggest that
tools for experimentally comparing resources are designed pri-
marily through the lens of experiments as a scientific method-
ology, and therefore miss a tremendous opportunity for online
experiments to serve as engines for dynamic improvement
and personalization. We present the MOOClet requirements
specification to guide the implementation of software tools for
experiments to ensure that whenever alternative versions of a
resource can be experimentally compared (by randomly assign-
ing versions), the resource can also be dynamically improved
(by changing which versions are presented), and personalized
(by presenting different versions to different people). The
MOOClet specification was used to implement DEXPER, a
proof-of-concept web service backend that enables dynamic
experimentation and personalization of resources embedded in
frontend educational platforms. We describe three use cases of
MOOClets for dynamic experimentation and personalization
of motivational emails, explanations, and problems.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; K.3.1. Computer Uses in Education

Author Keywords
A/B experiment; dynamic experimentation; MOOClet;
personalization; multi-armed bandit; reinforcement learning;
statistical machine learning; adaptive learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2017, April 20 - 21, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4450-0/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3051457.3054006

INTRODUCTION
One of the promises of online education is to advance research
on learning, and randomized experiments in online educational
environments have yielded many insights into learning and
motivation. However, it is important for academic research to
yield not only generalizable principles, but result in enhance-
ments to student learning. Unfortunately, there is a substantial
delay and many obstacles between obtaining experimental
results to making concrete changes to courses. Arguably, most
published randomized experiments in online environments do
not directly result in improvements to the context in which the
study was conducted.

In contrast, when randomized experiments or “A/B tests” are
used for product testing versions of websites and online adver-
tisements, the software is designed so that versions that maxi-
mize user engagement or purchases are provided to subsequent
users [3]. Instructors and students could benefit more directly
from research studies if software for educational experiments
was similarly designed to use data to dynamically transition
from assigning versions of a lesson with equal probability to
assigning effective versions more frequently for future stu-
dents, rather than using data from an experiment in one course
to impact design in a course occurring months later.

However, using data from randomized experiments to provide
one version of a resource to everyone reflects a “one-size-fits-
all” assumption, and could miss what are known as heteroge-
neous effects, where one version works well for one subgroup
of learners, while another version works better for a different
subgroup. Experiments could therefore lead to personaliza-
tion, in the sense that different conditions are presented to
learners with different characteristics. While personalization
encompasses many different approaches, such as intelligent
tutoring systems adapting how many activities are provided or
customization of choices by individual learners (see [2] for a
review), adaptive assignment to different versions of software
suggests one way to bridge experiments with the large body
of work on adaptive learning and personalization.

Despite the novel opportunities online environments provide
for randomized experiments and their widespread use, rela-

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

287

http://dx.doi.org/10.1145/3051457.3054006

tively little work has examined how to design tools for in-
structors and researchers to conduct experiments. The major
technical work on building tools for experiments has taken
place in industry settings like website testing, where compa-
nies like Facebook and Microsoft invested resources to im-
plement experiments and machine learning algorithms for
product improvement, like creating programming languages
for experiments [1]. This paper addresses the need for a more
standardized way of conducting experiments in educational
resources by proposing a software requirements specification
that can be reused in different contexts and eases the burdens
of customizing experiments through an API that facilitates
experimentation, dynamic improvement, and personalization.
We describe three case studies that used different implementa-
tions of this specification within learning resources.

DESIGNING SOFTWARE FOR EXPERIMENTATION, DY-
NAMIC IMPROVEMENT, AND PERSONALIZATION
We identify three major functions to support in the experi-
mental specifications, which are closely related to each other:
(1) Conducting an experiment on a resource, by assigning
alternative versions of the resource with equal probability. (2)
Dynamically improving a resource, by adding or removing
which versions are presented over time, as new ideas arise or
new data is collected. (3) Personalizing a resource, by present-
ing different versions to learners based on characteristics like
prior knowledge or motivation.

Design Goals
Tools for conducting an online educational experiment can
simultaneously enable dynamic improvement and personaliza-
tion, if it is possible to:

• Add and remove versions at any point in time.

• Use multiple methods for deciding how versions are de-
livered to a particular learner, including but not limited to
uniform randomization, weighted randomization, personal-
ization based on a learner’s characteristics.

• Change the method for assigning versions to learners, at any
point in time, such as changing the weights/probabilities for
assigning a version, changing the rules for assigning based
on a learner’s characteristics, or both.

• Collect and access data from past learners who received
alternative versions, in deciding which versions are best and
in dynamically improving a resource.

• Collect and use data about a specific learner, in deciding
which version to assign to them for personalization.

MOOClet Specification for Software for Experimentation,
Dynamic Improvement, and Personalization
To achieve the preceding design goals, we provide what is
known as a software requirements specification for what com-
ponents and functions should be satisfied by the software un-
derlying an experiment on a digital educational resource. We
name this the MOOClet requirements specification, and the

Figure 1. Components of the web service that enable an educational
resource to function as a MOOClet. Before a learner interacts with the
resource, the Learner Interface makes an API call to the web service,
and the Policy associated with the MOOClet can use information from
the Learner Data Store in selecting a version from the Version Set and
serving it to the Learner Interface. API endpoints allow addition or
modification of versions and variables, and changes to the current Policy.

Figure 2. The key API endpoints for the DEXPER web service. DEX-
PER serves as the backend for MOOClets by providing versions to a
frontend Learner Interface, and allowing modification at any point via
API of Versions, Learner Variables, and a Policy or its parameters.

term MOOClet1 is used to refer to any educational resource
augmented to meet these requirements. Roughly, implement-
ing a digital educational resource as a MOOClet associates
the frontend software presenting the resource to learners with
the backend software that maintains a set of versions, a store
of learner data, and a suite of methods for assigning versions
to learners (including rules for weighted randomization and
personalization). A MOOClet must also provide functions
that instructors or researchers can use at any time to mod-
ify the backend components, such as adding new versions or
learner data, and changing the method for assigning versions
to learners.

As depicted in Figure 1, an online educational resource imple-
mented as a MOOClet – or more formally, using the software
requirements specification for a MOOClet– has the following
components:

• A Learner Interface, which displays the content a learner
interacts with. The exact content the learner sees depends
on which alternative condition or version of an educational
resource they are assigned to. For example, one of two ex-
planations for why the answer to a problem is correct. This
is what would typically be called an educational resource,

1We introduce the novel term MOOClet because it is useful to have a
label for educational resources that matches this precise specification,
versus educational resources that only enable randomized experimen-
tation, or only enable personalization. The approach applies to any
digital educational resource, and to digital resources beyond educa-
tion, from websites to emails to mobile apps. Another term we have
used is AdapComp, short for Adaptive Component.

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

288

since there is usually just one version when no experiment
is being conducted.

• A Version Set, which contains alternative versions of content
that will be provided in the Learner Interface. For example,
this structure could contain multiple different explanations
a learner could be shown. Elements of the Version Set can
be accessed, modified, and added at any point.

• A Learner Data Store, which contains a set of variables
linked to each learner by their anonymous learner ID. This
might include whether a learner had gotten a previous prob-
lem right, or their rating of an explanation. Variables can
be added and modified at any point. All variables can be ac-
cessed and used by the Policy that determines which version
is assigned to a particular learner.

• A Policy, which is a function for determining which version
of a resource is presented to a particular learner, and can use
any data in the Learner Data Store, about the current learner
or the effects of versions on past learners. A MOOClet must
always have access to the Randomized Personalization Pol-
icy Class, which enables uniform randomization, weighted
randomization, and personalization using IF-THEN rules.
Particular MOOClet implementations can optionally pro-
vide a range of other Policy Classes.

DEXPER Web Service: Enabling Resources to Function
as MOOClets
We used the MOOClet specification to implement a proof-
of-concept web service that enables cross-platform dynamic
experimentation and personalization, which we call DEXPER.
DEXPER can be used with text and HTML components of
educational resources, which are ubiquitous across platforms
and play an important role in learning, such as motivational
messages, explanations, and problems or quizzes.

DEXPER is implemented using Django (a Python-based
framework for web applications), with classes that allow the
creation and modification of SQL database objects for text and
HTML versions that are needed for a MOOClet’s Version Set,
variables and values that make up the Learner Data Store, and
a range of Policy Classes. These components of the MOOClet
can all be added or modified using a set of RESTful API calls,
a specification of which are shown in Figure 2. We also use
built-in Django capacity to provide a graphical user interface
that allows manual editing of these data objects.

The DEXPER Policy Classes allow weighted random assign-
ments (e.g., from [0.50, 0.50] to [0.20, 0.80] to [0.0, 1.0]). The
weightings can be dependent on characteristics of the learner
to combine experimentation and personalization (as shown in
Figure 3). It also includes a policy for dynamic improvement
using Thompson sampling, a multi-armed bandit algorithm
from reinforcement learning [4]. In this policy, a target out-
come variable from the Learner Data Store is identified, and
the algorithm chooses condition assignments to maximize this
value of this variable across learners. At any point an API
call can be used to change the Policy being used for a specific
MOOClet (or equivalently, to change the Policy’s parameters).
Figure 3 shows the use of specific Policies in the use cases
discussed in the next section.

MOOClets provide an abstraction for reinforcement learning
More generally, the MOOClet specification serves as an ab-
straction for any reinforcement learning algorithm to provide
the Policy for a MOOClet. To use the terminology of RL,
Actions correspond to Versions, a State Space is implicitly de-
fined by learner characteristics in the Learner Data Store, and
Reward functions are based on data in the Learner Data Store
about past learners’ responses to versions. To provide extensi-
bility so that any machine learning researcher or service can
provide policies for a MOOClet/experiment, DEXPER pro-
vides a Policy that functions as a pass-through: it sends data
from the Learner Data Store to another API or code base to
obtain a recommendation, and then allows the external method
to specify which version DEXPER selects and sends to the
Learner Interface. This allows researchers to take advantage
of existing implementations of algorithms without needing
to design their own interface between the algorithm and the
educational resource.

APPLICATIONS OF MOOCLETS
This section describes three educational resources that were
implemented as MOOClets, which illustrate the use of the
requirements specification and DEXPER.

Use Case 1: Personalizing Emails. Learners in a MOOC were
sent emails that elicited feedback about why they were not con-
tinuing with a course [4]. Different introductory messages to
the emails were written, with the goal of maximizing the num-
ber of people providing feedback. The Version Set consisted
of three versions of email content (conditions in experiment)
differed in the introductory line, labeled Survey, Acknowledge-
ment, Brief. The survey/emailer software Qualtrics functioned
as the Learner Interface, and was used to send emails and
provide the survey to collect learners’ feedback. The Number
of Days Active for each learner was obtained from the MOOC
provider and sent via API to the Learner Data Store, in which
all learners were identified by an anonymous ID (that could be
connected by us to their email address). The outcome variable,
Provided Feedback, was whether a learner responded to an
email within one week. The value of this variable was added
to the Learner Data Store every time a participant finished a
survey, via an API call from the survey software Qualtrics.

The first batch of 1883 learners were assigned to emails with
equal probability, using the Policy Weighted Randomization
with parameters [0.33, 0.33, 0.33*]. The second batch of
1882 learners were assigned to emails using two policies.
The first policy was to “roll out the best version” by using
WeightedRandomization[0, 0, 1] to assign only the version
with the highest response rate from the first batch of learners,
the Survey message. This produced a response rate of 10.4%.
The second policy was to personalize to subgroups of learners,
since analyzing data from the first batch revealed a “crossover”
effect. Learners with high course activity were most likely to
respond to the highest rate to the Acknowledgement message,
but learners with lower course activity were most likely to
respond to the Survey message. Using this Personalization
Policy resulted in 11.2% of learners providing feedback. This
increase of 0.8 in response rate corresponded to a 7.6% ad-

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

289

Figure 3. Overview of three uses cases for a MOOClet, showing what played the role of Learner Interface, Version Set, Policy, and Learner Data Store.

vantage of personalization over choosing the apparently “best”
condition.

Use Case 2: Dynamic Explanations. To provide learners with
explanations of why the answer to a math problem is correct,
the AXIS system [5] automatically enhances the explanations
learners received by crowdsourcing them from learners, pre-
senting them to future learners, and dynamically choosing the
most highly rated. Anyone can create systems like this using
DEXPER and MOOClets. We implemented the displayed
explanation as the Learner Interface to a MOOClet. The Ver-
sion Set contained different versions of explanations. The
variables added to the Learner Data Store included: the ver-
sion/explanation assigned to each learner, and each learner’s
rating of the explanation they received. The Policy was DEX-
PER’s DynamicRandomization, with the variable to opti-
mize being learners’ rating of a version of an explanation.

Use Case 3: Problem Recommendation. We used DEXPER
and MOOClets to provide individualized recommendations of
problems for students in a MOOC, based on a student’s perfor-
mance on prior problems. The Learner Interface is provided
by an LTI tool that allows the embedding of various problem
“windows” inside an edX MOOC. The problems displayed in
a window were native edX content, but the MOOClet allowed
an external web service to decide which problem was dis-
played. This was enabled by the Version Set containing links
to individual problems. Then, DEXPER allowed problem rec-
ommendation to be outsourced to an external web service. An
organization provided an API to receive problem recommenda-
tions based on their implementation of Bayesian Knowledge
Tracing, which obtained a user’s variables from the Learner
Data Store, such as performance on past problems and other
course activities like video watching.

CONCLUSION
This paper presents the MOOClet requirements specification
for designing software for experimentation, so that every ran-
domized comparison of versions of a resource enables dy-
namic improvement and personalization of that resource. We

created a proof-of-concept web service, DEXPER, that pro-
vides the backend for a MOOClet: Version Set, Learner Data
Store, and a suite of Policies. We described three applications
of MOOClets and DEXPER: to experiment on and personalize
emails to MOOC learners, automatically improve learners’ sat-
isfaction with explanations in math problems, and adaptively
tailor problems in a MOOC based on learners’ past perfor-
mance. For future work, we plan to improve the specification
and tools by working with more instructors and researchers
and verifying improvements in their practice and course con-
tent. Furthermore, we will release our tools as open source.

REFERENCES
1. Eytan Bakshy, Dean Eckles, and Michael S Bernstein.

2014. Designing and deploying online field experiments.
In Proceedings of the 23rd International Conference on
World Wide Web. ACM, 283–292.

2. Peter Brusilovsky and Christoph Peylo. 2003. Adaptive
and intelligent web-based educational systems.
International Journal of Artificial Intelligence in
Education (IJAIED) 13 (2003), 159–172.

3. Ron Kohavi, Roger Longbotham, Dan Sommerfield, and
Randal M. Henne. 2009. Controlled experiments on the
web: survey and practical guide. Data Mining and
Knowledge Discovery 18, 1 (2009), 140–181.

4. Jacob Whitehill, Joseph Jay Williams, Glenn Lopez,
Cody Austun Coleman, and Justin Reich. 2015. Beyond
prediction: First steps toward automatic intervention in
MOOC student stopout. Available at SSRN 2611750
(2015).

5. Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel
Maldonado, Krzysztof Z Gajos, Walter S Lasecki, and
Neil Heffernan. 2016. AXIS: Generating Explanations at
Scale with Learnersourcing and Machine Learning. In
Proceedings of the Third (2016) ACM Conference on
Learning at Scale. ACM, 379–388.

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

290

	Introduction
	Designing Software for Experimentation, Dynamic Improvement, and Personalization
	Design Goals
	MOOClet Specification for Software for Experimentation, Dynamic Improvement, and Personalization
	DEXPER Web Service: Enabling Resources to Function as MOOClets
	MOOClets provide an abstraction for reinforcement learning

	Applications of MOOClets
	Conclusion
	References

