

 ReadWriter: Task Automation and Feedback Support
for Bloggers with Inline Syntax [[]]

Juho Kim1 Chen-Hsiang Yu1 Robert C. Miller1 Krzysztof Z. Gajos2
1 MIT CSAIL

Cambridge, MA 02139
{juhokim, chyu, rcm}@mit.edu

2 SEAS Harvard University
Cambridge, MA 02138

kgajos@seas.harvard.edu

ABSTRACT
This paper presents ReadWriter, a novel blogging interface
that enables task automation and offers on-demand writing
feedback. Bloggers can express any writing-related help
requests in natural language inside double brackets. Read-
Writer interprets a blogger’s requests and assigns them to a
diverse group of contributors: software search agents, an
anonymous crowd, the blogger’s social connections, and
readers. The entire cycle of creating a request, checking
status, reviewing results, and applying to a draft occurs
inside the blogging interface. Design goals are to help writ-
ers maintain flow by automatically managing housekeeping
tasks, and to engage readers earlier on in the writing pro-
cess. Analysis of collected requests identified distinct cate-
gories of tasks people expect from the system. Five blog-
gers in the lab study found the tool easy to learn and use,
and exhibited various usage patterns during a writing task.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Human Factors
Keywords: Writing, reading, blogs, creativity support
tools, reader-writer interaction, outsourcing.
INTRODUCTION
Blogs have gained popularity as an effective communica-
tion medium for personal broadcast. Although many blog-
ging platforms claim to lower the barrier in blogging, a
recent trend suggests a shift toward simpler forms of com-
munication within a closed social network. A recent NY-
Times article [14] quotes:
“Former bloggers said they were too busy to write lengthy
posts and were uninspired by a lack of readers.”
Two common challenges for bloggers are to create richer
content to attract more readers, and to get more feedback
from others. A popular technique for creating richer content
is embedding visual aids and links to provide more engag-
ing reading experience. In our interviews with bloggers and
writers, one blogger notes:

“I really think every post needs to have a picture. It does
get people interested. A picture, or video or something. But
if I only have half an hour, I can’t blog because… I have to
find pictures, get the links and whatever. Sometimes I skip
it. I call that housekeeping work. I don’t have time to do the
housekeeping.”
Housekeeping tasks often involve tedious steps, such as
searching, browsing, copying, and importing multimedia or
links to the draft. Bloggers suffer from continuous distrac-
tions, broken flow, and wasted time, which result in resort-
ing to plain-text posts and even opting out of blogging.
Building on other’s feedback is a proven technique to im-
prove the quality of writing [8]. Keh [11] notes “Reader
feedback on the various drafts is what pushes the writer
through the writing process on to the eventual end-
product.”
We argue that bloggers lack an efficient feedback platform.
Commenting, the most popular feedback mechanism today,
allows interactions with readers, but there are nontrivial
limitations. First, comments are available only after a post
is published; there is no convenient way for bloggers to get
feedback while writing. Also, a vast majority of lurking
readers are not motivated enough to be active contributors.
The spokeswoman at LiveJournal, a commercial blogging
platform, mentions [14] that “Blogging can be a very lone-
ly occupation; you write out into the abyss”.

Figure 1. (a) When a blogger creates a [[]] task, (b)
the task list captures the bloggerʼs request, and (c)
automatic search results are shown to the blogger.

We conducted interviews with four writers and bloggers to
better understand their writing process and needs for tool
support. The interviews confirmed our view that bloggers
suffer from the cumbersome process of searching for exter-
nal sources and a lack of feedback. The findings suggest
two design goals: to help writers maintain flow by automat-
ically managing tedious tasks, and to engage readers earlier
on in the writing process for enhanced feedback support.
This paper presents ReadWriter, a novel blogging interface
that address the two design goals with a simple solution:
double brackets [[]]. The system enables task automa-
tion for housekeeping tasks and offers writing help. Double
brackets are inline helper syntax for arbitrary tasks that a
blogger might need. A task can be as simple, as in [[find
an image of a peacock]], or more contextual as in
[[Bob, can you find another example to sup-
port this paragraph?]]. The blogger does not have
to press a button or learn markup language syntax, and
simply can express intentions in natural language.
Once a task is created, the system automatically interprets
the natural language query and delegates it appropriately.
Based on the nature of the task, ReadWriter can route the
task request to a diverse pool of contributors: search
agents, a crowd, social connections, and readers. The entire
cycle of creating a request, checking status, reviewing re-
sults, and applying results to a draft occurs inside the blog-
ging interface.
In order to understand what kind of tasks people expect
ReadWriter to handle, we picked 72 blog posts spanning
various themes and popularity. Then we asked workers on
Mechanical Turk to each submit three bracket requests that
they might imagine using for the assigned post. From these
responses, we identify several main classes of tasks: search
delegation, writing help, fact verification, , and formatting.
The next question, then, is how do bloggers actually use
ReadWriter in writing? We invited five bloggers to a lab
study and assigned a writing task with ReadWriter enabled.
The bloggers found the bracket syntax easy to learn and
use, and created tasks for various purposes.
Main contributions of this work are: 1) the lightweight in-
terface for expressing and managing writing help requests
in natural language, 2) the support for diverse contributor
groups for writing tasks, 3) the new mode of feedback sup-
port: blogger-initiated, directed, fine-grained feedback re-
quests while writing.
With this system, we claim that writers can maintain their
flow while the system manages tedious work. The simple
natural language syntax helps bloggers delegate housekeep-
ing tasks to a diverse set of contributor groups. Also, blog-
gers can improve the quality of their writing by issuing on-
demand feedback requests. This engages readers earlier on
in the writing process. The new feedback mechanism is a
step toward the vision of enhanced reader-writer interac-
tion, turning readers into active contributors.

In this paper, we first outline related work in the context of
design space. We illustrate a usage scenario, followed by
design decisions from user observations. The system sec-
tion walks through the lifecycle of a task and presents
frontend and backend systems. We report categories of task
and bloggers’ experience with the system. We conclude by
discussing the findings and presenting the vision of better
reader-writer interaction.
RELATED WORK
The idea of writing support tools that provide writers with
external help is not new. Each tool tackles different seg-
ments in the design space. We outline three major design
dimensions for the writing aids and discuss related work for
each. The dimensions can be represented with the follow-
ing questions: ‘Who does the work for writers?’, ‘What
tasks are supported by the tool?’, and ‘How does the tool
capture a writer’s intention?’.
Who does the work?
One solution presents writers with automatic recommenda-
tions selected by ambient agents. JITIR (Just-In-Time In-
formation Retrieval) agents [18] perform proactive searches
based on a user’s context, and display relevant results.
Concrete example systems include: the Remembrance
Agent [19] that suggests relevant, pre-indexed, local docu-
ments; Writer’s Aid [1] that applies AI planning techniques
to perform ambient searches as a collaborative assistant;
PIRA [21] that extracts salient terms from the current doc-
ument and searches the corpus of digital libraries; Watson
[6] that returns related web pages, applying term heuristics
for query construction and similarity metrics for result clus-
tering; Zemanta [24] that recommends related contents for
bloggers, based on text analysis techniques.
Crowdsourced workers have emerged as a powerful source
of writing support because of their capability of handling
human intelligence tasks at a low cost. Soylent [2] intro-
duces design patterns to improve the quality of
crowdsourced work in writing and editing tasks. More re-
search has investigated writing tasks in the crowdsourcing
context [12] [15] [10].
Other work has shown how leveraging a user’s social net-
work can enhance accuracy and personalization. Bernstein
et al. introduced friendsourcing [4], a mode of collecting
personalized information from one’s social connections.
Aardvark [9] is a social search engine with a routing algo-
rithm for determining the best answerer to meet a user’s
needs. There is little work on integrating social network
resources with writing tasks.
In blogs, communication between readers and writers main-
ly remains one-way. Blog Muse [7] and Reflect [13], cov-
ered in more details later, attempt to bridge the gap be-
tween readers and writers with novel interactions. Some
work has explored how passive readers can evolve into
active contributors in social communities [17], but few
work addresses the blogging context specifically.

In summary, previous research has focused on completing a
writing-related task with a single worker type. ReadWriter
supports a mixed pool of worker groups, namely automatic
agents, crowdsourced workers, social network, and desig-
nated contacts. It overcomes the complexity of handling
different groups with task interpretation and automatic
routing algorithms.
What tasks are supported?
Soylent [2] offers three types of writing help for MS Word
users: shortening text to a desirable length, proofreading,
and arbitrary requests. While ReadWriter tackles similar
writing struggles as Soylent, there are two major differ-
ences. First, ReadWriter focuses on optimizing the user’s
workflow of issuing a query, reviewing results, and updat-
ing content inline. The main contribution of Soylent is the
patterns for crowd-powered interfaces. The two techniques
can potentially be combined in a larger system. Also,
ReadWriter adds social network and automatic search
agents as contributors, in addition to crowd workers.
In the early stage of writing, choosing a topic is an im-
portant decision for bloggers. Blog Muse [7] allows enter-
prise bloggers to benefit from readers’ topic suggestions.
ReadWriter addresses later steps in the writing process,
where bloggers can issue directed, fine-grained, and specif-
ic feedback requests while writing. At the post-publication
stage, Reflect [13] facilitates active listening among discus-
sants with enhanced commenting.
How is a task created and managed?
JITIR agents do not require explicit input from a user, be-
cause the system’s role is predefined and constant [1]. In
ReadWriter, the user initiates tasks with explicit [[]].
Using specific syntax to indicate the user’s writing and
editing intentions is common in text editing languages.
Wordpress Shortcodes [22] are shorthand macros that sim-
plify complex embed operations into short code. A down-
side of Shortcode is that users still have to search for a
URL manually and learn syntax. ReadWriter allows com-
plete natural language queries without imposing any format
constraints. Natural language-like commands can be found
in the programming context as well [16].
USAGE SCENARIO
We introduce ReadWriter with a hypothetical user’s blog-
ging scenario. Carrie is a freelance writer who keeps a blog
about her dining and cooking experience, as well as useful
recipes and diet tips. Her blog has a few thousand readers
and hundreds of RSS subscribers, and each page features
the Twitter Retweet and Facebook Like buttons. The blog
has drawn some clients’ attention, including food maga-
zines and local newspapers. She utilizes her blog to show-
case her work and reach out to potential clients.
One day, she decides to write about a splendid quiche bak-
ery called Bouchon Bakery she visited during her recent
New York City trip. She plans to write a review of the
place and dishes, as well as a paragraph with interesting
background on quiche. She opens the Wordpress post page.

One of the sidebars is named ReadWriter Tasks, which is
currently empty.
In her first paragraph, she wants to add the website link,
map, and telephone number of the restaurant. In a place
where she wants the link to be, she types in [[website
of bouchon bakery]]. For readers not familiar with
quiche, she also inserts [[link wikipedia quiche]].
She decides to add a video clip of the French song Aux
Champs Elysees that was playing in the bakery. Unsure
about the exact spelling, she types in [[add a youtube
video clip of champ elysee]] and moves on.
In the second part of the article, she wants to include the
background information on quiche. Then she adds [[find
a delicious, mouth-watering photo of a
quiche that goes well with this paragraph]].
She notices a icon on the list for this task, indicating
that ReadWriter assigned a hired crowd to the task.
After drafting the paragraph on quiche, she is worried about
the accuracy of content. She would like to have her profes-
sional cook friend Lindsey to check the paragraph for any
errors. At the end of the paragraph she adds [[ask lind-
sey@gmail.com if this description about
quiche is correct]].
Finally, she concludes the piece with useful information to
readers. [[ask my Facebook friends, can you
suggest nice quiche places in NYC?]]. During
the entire drafting phase she didn’t open any web page.
Now she has a first draft. She goes over each item in the
task list, immediately reviewing and selecting results for
image, video, and link queries and picks the best one from
each results page. The selection automatically replaces the
[[]] content in the editor. For the bottom three, she
clicks on the link and confirms creating a HIT on Mechani-
cal Turk, sending Lindsey an email, and posting a Face-
book status update. All help requests include a URL these
contributors can use to submit their input.

Figure 2. Carrieʼs Wordpress authoring interface
with ReadWriter installed. The top right sidebar
keeps a list of tasks in the current document.

Carrie opens the saved draft after a few hours to check the
status for the three human tasks. She gets nice quiche im-
ages from Turkers that are more customized to her needs
than generic Google Images search results. Her friend
Lindsey was fast enough to send her feedback on the draft
paragraph, and four Facebook friends got back with sug-
gestions for other quiche places. All the submitted results
are collected and displayed by the interface, so she need not
visit other sites to check individual results.
DESIGN PROCESS
We adopted an iterative design process for the development
of the tool. Three events that had significant influence on
the tool design were a paper prototype pilot study, inter-
views with bloggers and writers, and functional prototype
tests. The paper prototype study involved three graduate
student bloggers. We asked them to handwrite a blog post
with [[]] notations for outsourcing needs. We observed
how and when people use [[]]. Multiple iterations of
functional prototype design helped us refine the system.
The rest of this section discusses findings from the inter-
views and design decisions that followed.
Interview
We interviewed 4 professional writing instructors, writers,
and bloggers around the (city) area. Our goal was to better
understand their writing process and discover latent needs
for tool support. We asked the interviewees to walk us
through a representative writing task (for writers and blog-
gers) and/or assessment task (for instructors). While the
writers and bloggers shared their expertise from the per-
spective of a content creator, the writing instructors offered
the perspective of a feedback provider. At the end of each
session, we verbally described the ReadWriter blogging
support system and asked for qualitative feedback.
P1, writer and writing instructor, mentioned that he always
keeps a list of TODO items at the bottom of a document
when he writes. He adds items to the list as he writes and
revisits the list once he is through a first draft.
Another blogger/instructor/writer (P2) feels that 30% of her
blogging time is wasted in taking care of housekeeping
work, which she describes as “kind of a pain to go … copy
and paste it, do a little hover over thing”. When not confi-
dent about the writing, she emails the draft to her col-
leagues and family members to get feedback before pub-
lishing it. As a writer, the quality of writing is one of her
top priorities in managing her blog.
P3 is a writer and English professor who has two published
books and blogs about his writing practice. In his view,
current blogging tools make it “too easy to be hung up on
details like formatting and beautifying”. He believes get-
ting feedback from different audiences is useful, helping
writers to see “outside of their self-confining world view”.

Two themes emerged from the interviews. First is need for
a tool designed to minimize distractions while writing by
automatically managing housekeeping tasks. This led to the
important design decision of allowing complete natural
language tasks. One early ReadWriter design guided users
to fill in a structured template from a dropdown menu with
predefined options. After pilot users struggled with learn-
ing and adapting to the new interaction, the design evolved
into completely format-free syntax except for double
brackets.
The second theme is a lightweight process to reach out to
different reader groups for feedback. The effort of initiating
specific feedback requests is often a barrier for writers, in
addition to managing their social capital in asking a favor.
We envisioned an interface that allows writers to make
inline [[]] requests and send them out with a single
click. The following sections explain how ReadWriter takes
a step toward the vision.
INTERFACE DESCRIPTION
Writer Interface
We built a Wordpress plugin named ReadWriter to proto-
type the key ideas. The design goal of this interface is to
minimize any visual clutter or input overhead on the writ-
er’s side. All complexity of interpretation and configuration
is handled by the system and management interface. This
lets bloggers focus on the writing. As Figure 3 shows, the
ReadWriter plugin adds a side panel to the Wordpress au-
thoring interface.
The system accepts any natural language query inside
brackets, without any grammar or format constraints. Ta-
ble 1 on the next page presents example tasks collected
from the Mechanical Turk experiment and user study ses-
sions with bloggers.
When the blogger adds a [[]] task in a draft, the inter-
face automatically adds an item to the list on the right. The
order in the list follows the position in the draft, to help
writers navigate the list and the draft in synchronization.
Task information includes task status and its summary. The
task status is displayed with a small icon to minimize visual
clutter in the list. Figure demonstrates various states a task
can have. Upon creating a
task, the blogger sees
either or one of

 icons. means
the system interpreted the
task to be automated
without any human input.
The number inside indi-
cates the number of re-
sults that have been col-
lected so far for this task.

Figure 3. Side panel
view with task status
and summary

On the other hand,
 indi-

cate that the system
is waiting for user
confirmation on the
task that involves
human helpers.
Each of the four
icons represents a
distinct group of
human contribu-
tors: is specific
email addresses,

 is Facebook
friends, is Twit-
ter followers, and

 is a hired crowd
on MTurk. The
original version of

the prototype automatically sent out task notification with-
out user confirmation to minimize user actions. In our de-
sign process, however, pilot users expressed concerns on
their help requests spamming other’s email inbox or news
feed. A similar observation was made in a link sharing sys-
tem FeedMe [3]. The current version mandates user con-
firmation before requests are sent out to any human worker.
The blogger can manage a specific task by clicking on the
task link in the list. The task management interface (Figure
4) lets users edit the current interpretation of the task and
send requests to any human groups. The bottom part of this
interface presents results collected for this task.
For each of the five available worker groups, the user can
click open a setting menu (Figure 5) and customize the
Twitter/Facebook/email message or configure other fields.

Once the user manually sends out task requests to designat-
ed human groups, the status icon automatically switches to

 to inform that the system has now begun gathering re-
sults from workers. This number gets updated as the system
receives results.
Below the menu follow results, with a customized view for
each result type. The Apply button next to each result in-
line-updates the selected result to the current draft. Clicking
the button replaces the corresponding [[]] with the se-
lected result. The task status now changes to , meaning
completed.
Contributor Interface
For human workers to handle writers’ requests, they need
an interface to access task information and submit their
results. The ReadWriter system provides a simple UI for all
human contributors. When a blogger specifies contributors
for a specific task, the contributors receive a URL to access
the contributor’s interface.
As Figure 6 illustrates, the contributors interface consists of
task description, rich-text editor, a link to an example, a
user name field, comments, and a submit button.

Figure 5. Worker assignment control for auto-
mated (top) and Twitter tasks (bottom). The
blogger can customize options for each worker.

Figure 4. Task management
interface: worker assign-
ment and results are shown.

Category Information Task Example

Search
Delegation

Image [[find an image of shale gas extraction]] (from Turker)

Link (URL) [[President Cancer Panel Report from 2010 web link]] (from Turker)

Link (Document) [[Richard Stanley, q-deformation hyperplane arrangement, pdf, arXiv]] (from
Blogger)

Video [[find good videos about tina fey]] (from Turker)
Fact [[find full text of Robert burns poem tooth-ache]] (from Blogger)
Image (complex) [[Find an image to go with the article (probably of mentioned house of worship or

religious imagery)]] (from Turker)

Writing
Help

Mechanical [[shorten Allen's quote to get to the heart of it, make easier to read]] (from Turker)
High-level [[make paragraph: one way that people share images of a trip is with a scrapbook

(at least, women do, and a women suggested this to me) say what scrapbooking
is]] (from Blogger)

Fact
Verification

Confirming facts [[research if this has been an issue with any other past president]] (from Turker)

Formatting Simple fixes [[center photo]] (from Turker)

Table 1. Task examples with category and a brief description. They are collected from either Turkers or blog-
gers from our evaluation studies.

The task description is the original content inside double
brackets. Contributors can edit the assigned task within
the rich-text editor and add comments to the writer for
any clarification or additional notes. The text editor dis-
plays context for the current task, the enclosing para-
graph, to help contributors better understand writer’s in-
tention. The context is divided into editable and unedita-
ble regions, highlighted with gray and yellow, respective-
ly. Contributors can optionally specify their names that
help writers to recognize and credit them for their work.
Once the contributor submits a result, it is accessible to the
blogger instantaneously, with an updated result count.
BACKEND SYSTEM
This section describes the backend system architecture in
further detail. As a blogger adds [[]] in the editor, the
task detector captures all instances of brackets and sends
them to the task interpreter (Figure 7(1)). The interpretation
results are then stored in the database (Figure 7(2)). Based
on this information, the task dispatcher either starts auto-
mated tasks or awaits user confirmation if human workers
are involved. For the automated tasks, a search agent gets
results using external search APIs. The information extrac-
tor parses the result data and stores it to the database
(Figure 7(5) and 7(6)). On the other hand, if the task re-
quires human labor, the task router sends out a unique URL
for the contributor’s interface. Contributors from different
sources access this interface to conduct the outsourced task
(Figure 7(7)). When the contributors submit their results,
the results are stored in the database. The Wordpress plugin
periodically checks for any database updates and refreshes
the task list. The following subsections discuss important
technical decisions and methods.
1) Query Detection
Upon typing two consecutive opening square brackets, the
system automatically adds closing brackets and encapsu-
lates this new task with tags. The system uses the
span element to both retrieve task information and replace
with user selection. The system makes Ajax calls to main-
tain up-to-date task information on the right-hand task list.
2) Query Interpretation
A downside of allowing complete natural language queries
is that capturing accurate intent of the blogger becomes

more difficult. The immediate problem is to determine ap-
propriate work forces for the task. It involves multiple deci-
sion criteria such as monetary cost, time delay, user’s social
network composition and social capital, and readership
management. The current prototype addresses some of the-
se issues with heuristics.
Our rule of thumb in worker assignment is that human
tasks are more complex, contextual, and subjective feed-
back requests, whereas automated tasks tend to be mechan-
ical media search queries.
While solving search problems often succeed with using
the content inside brackets as search terms, answering
feedback requests often requires context outside of the
bracket syntax. For example, if the writer issues a task that
says [[find a more compelling example for
this paragraph]], the system needs to include the con-
tent of this paragraph in the task request so that contribu-
tors can see it. Our current solution is to include the enclos-
ing paragraph of a task as context for all tasks.
For automated tasks, the system needs to extract structured
information from a natural language query in order to de-
termine a result type for the task, and transform natural
language to a query for search APIs. The result type deter-
mines which engine to use for search. The query interpreta-
tion strategy can be summarized as follows:
1. Given a query [[]], determine
 worker from { automatic, hired crowd, Twitter, Face-
book, email }
2.a. If worker is human,
 context = { current paragraph }
2.b. If worker is auto,
 query = { content inside brackets } and determine

 result_type from { image, video, link, text }

Figure 6. Contributorʼs interface: all human work-
ers submit their results using this web interface.

Figure 7: The system diagram with each step in the

task life cycle numbered in order.

Our solution keeps a predefined pairs of (input, re-
sult_type). For example, image, figure, picture, photo, pic,
and icon all link to the image result type. For each word in
the query, ReadWriter looks up the word in the dictionary
for any match. For any match, the interpreter assigns a type
to this query. Multiple types can be assigned. Because the
order of words, sentence structure, and grammar of a query
do not matter in ReadWriter, even simple heuristics pro-
duce reasonable output.
3) Task Assignment
Using the extracted structure from query interpretation, the
system routes work to the right group of contributors. For
automated tasks, we use Google Images for image search,
Youtube for video search, and a combination of Zemanta
and Bing for link and generic search. For human tasks,
workers are either Turkers or writer’s social connections.
The task router creates a unique URL for a (task, worker)
tuple, and includes it in HITs or Twitter/Facebook/email
messages. This way different types of contributors can use
a single interface accessible with a URL.

4) Results Presentation
The interface renders an optimal view for the detected re-
sult type: an embedded player for a video clip, a thumbnail
preview for an image, and editable anchor text for a hyper-
link. For URLs, the interface pre-fills the anchor text with
the title of a page as shown in Figure 8. The user can edit
this text to customize the rendering of applied results.
5) Inline Update of a Result
The final step in the task lifecycle is to replace the [[]]
content with the user’s selection. The code generator mini-
mizes user action by optimizing for each media type.
As shown in Figure 8, if the user is trying to link the offi-
cial White House website, the result page has already popu-
lated the anchor text field with The White House. The user
can simply click Apply to substitute [[the white house
website]] with the following HTML code that renders as
The White House:
<a href=’http://www.whitehouse.gov’ alt=’The
White House’>The White House
The user can either apply other results or edit the query to
collect new results. In this case, the new results are present-
ed on top of the new ones to preserve workers’ effort. The
user can always create new queries to get fresh results.
6) Implementation
The entire system is packaged as a single Wordpress
plugin. Our plan is to register the software to the Word-
press plugin directory and deploy it to the actual Wordpress

user population. With the open-source policy, we expect to
attract developers to connect to more external services to
support more result types (e.g. map, movie reviews, source
code, Q&A). Most code is written in Javascript and PHP to
achieve portability and flexibility. It will make porting the
system to other web authoring platforms easier later.
EVALUATION
We conducted a two-part evaluation to verify the design
concepts and assess usability of the system. First, we
crawled 72 blog posts and asked crowd workers to identify
opportunities for bracket queries. We clustered tasks into 4
classes. Second, we invited 5 bloggers to the lab and ob-
served them write a blog post using our tool. We collected
qualitative feedback on usability and overall experience.
What do people expect from [[]]?
The goal of this evaluation was to clarify the types of tasks
ReadWriter can support and to understand how the system
can address the distinct properties of each task type.
We handpicked 72 blogs spanning diverse themes and pop-
ularity. We selected 8 blogs from each of the following 9
categories: entertainment, business, sports, politics, tech-
nology, science, lifestyle, small business, and personal. The
categorization closely matches with that of major blog di-
rectories such as Technorati [20]. The list includes blogs
from top-ranked blogs in Technorati, Blog of the Day [23]
from wordpress.com, Blogger’s Blog of Note [5], and a
random selection of small and personal blogs. We picked
one most recent entry from each blog. We then asked each
Turker to identify three possible [[]] tasks after reading
one of the 72 posts in the corpus.
Using 216 instances of [[]] queries collected, we identi-
fied 4 task classes: Search delegation, Writing help, Fact
verification, and Formatting. Two researchers made subjec-
tive decisions for each task until agreement. There were 13
that are not included in any of the 4 classes. This set con-
sists of outliers and spam.
In Search delegation (108 tasks, 50%), Turkers expect the
system to find relevant images (40 tasks), links (37 tasks),
facts (18 tasks), video clips (10 tasks), or synonyms (3
tasks). The result verifies that the four result types in
ReadWriter, namely image, link, video, and text, cover
most search requests.
While a majority of queries are straightforward, there are a
few complex examples such as [[Find images of her
other tattoos, so reader can judge if they
are getting any better.]] With specific natural
language requests embedded, simply passing the query to
the search engine might fail. These kinds of queries might
benefit human intelligence. Fact search queries are normal-
ly more challenging for AI than others because they often
require more context and retrieval techniques. Some exam-
ples include [[find scripture verses that sup-
port the persona of the Jesus of the Bible]]
and [[Add latest details of this product]].

Figure 8. Result display for a hyperlink.

The interpreter in ReadWriter successfully identifies all
result types in this category. ReadWriter’s current policy of
assigning fact searches to both Turkers and automatic
agents is a reasonable heuristic, although contextual text
analysis techniques can potentially improve the precision.
Writing help (61 tasks, 31.5%) refers to various levels of
help requests on writing. It ranges from spell check and
word choice questions to proofreading sentences and para-
graphs, and to even higher-level requests such as [[or-
ganize the post in a refreshing way]]. Read-
Writer assigns most (60/61=98.3%) of the tasks to Turkers,
and one request, [[give the photos caption]], to an
image search agent. in the absence of keywords indicating
human contributors inside a request.
Fact verification (23 tasks, 10.6%) tasks request the con-
firmation of a stated fact. These tasks normally include
terms check or verify. Some examples include [[check
the authenticity of references]] or [[verify
dates]]. These tasks normally require human workers,
and ReadWriter assign all 23 tasks to human contributors.
Finally, Formatting (5 tasks, 2.3%) tasks ask for fixing the
style inside a document, as in [[re-format text
around google ad]]. The current ReadWriter system
cannot handle these requests because it is not connected to
styling functions inside an editor.
We argue that although ReadWriter can misinterpret direc-
tions, the system fails soft because users can easily add
additional workers in the management interface. The cost
of omission is not high. The over-assignment case also de-
ploys a fail-soft technique by requiring users to always con-
firm before sending out task requests to any human con-
tributors, preventing errant payments or social requests.
The task data from Turkers provides insights on how users
perceive the writing assistant system, and what kind of
tasks they expect the system to handle. A limitation of this
approach is that Turkers’ reactions do not reflect content
authors’ views. Especially for high-level requests such as
feedback requests, one can only speculate about the origi-
nal intent of the author. This data also omits any infor-
mation about the user experience of the system; we discuss
the user experience below.
Blogging with ReadWriter
We designed a user study to observe bloggers in an end-to-
end blogging task, evaluate usefulness and usability of the
interface, and collect qualitative feedback. We invited 5
bloggers to the lab (1 writing instructor and 4 graduate stu-
dents in engineering and science). The session started with
interviews on their current blogging practice. The discus-
sion included blogging frequency and time commitment,
topic and identity management, Twitter/Facebook integra-
tion, and communication with readers. Then we explained
the goal of research and gave them a simple ReadWriter
tutorial. The main task was to write any blog post she
might write in their blogs using ReadWriter. In case that
she needed inspiration for topics, we verbally listed some

keywords (e.g. movie, music, research, class, etc.). We
requested posts to be more than 2 paragraphs to assure
enough usage experience. Think aloud was encouraged,
although we did not remind them while they were writing
to avoid disrupting their concentration. After the writing
task, a discussion addressed the following questions.
-How difficult was it to learn to use ReadWriter?
-When did you find ReadWriter useful / frustrating?
-What kind of questions to what kind of workers?
-How would you use this tool in your blogging practice?
-Any suggestions for interface fixes or additional features?
Blogging practice
The bloggers all had one or more active blogs, except for
P4 who has temporarily paused blogging for 3 months. He
stopped because of time commitment and pressure of pub-
lic exposure. As a writer, P1 writes about writing and
sometimes posts snippets of her work. For P5, his blog is a
place for personal interests and thoughts, where he would
like to keep a small number of dedicated readers and
friends. The others primarily post research-related content.
P3 and P4 both said they avoid expressing strong opinions
and posting content they are not highly confident about.
Creating tasks
As shown in Table 2, out of 32 tasks created, 18 (56%)
were search delegation queries (e.g. [[image corn-fed
midwest]]). This proportion roughly matches with the
categorization result (50%). There were feedback requests,
as in [[I actually haven’t seen any movie by
Mamoru Hosoda any comment will be welcome]].
The tone in the two examples is clearly different: the for-
mer looks like a search engine query while the latter looks
like a personal message to others. We found no case of
proofreading or fact verification, possibly because the par-
ticipants were not writing long, informational posts.
We count a request as success (50%) when the user accepts
one of the results or verbally indicates that the goal was
met (e.g. a result gives an answer, although the user does
not apply it to the draft). Failure (31%) is as when the sys-
tem fails to retrieve any satisfactory result or when the
blogger states so. There are sometimes unclear cases
(19%). An example is when the user indicated a feedback
request but decided not to actually send it out during the
study. These cases are considered neither success nor fail-
ure. Because of the latency in getting results from human

User #
Tasks

Search

Success

Failure

Word
count

P1 7 6 4 2 171
P2 5 1 1 1 104
P3 9 6 5 4 488
P4 6 2 2 2 233
P5 6 3 4 1 93
Avg 6.4 3.6

(56%)
3.2

(50%)
2

(31%)
217.8

(34/task)

Table 2. The bloggersʼ post statistics.

contributors during sessions, the results in this section only
report automatic search results.
We report a few notable usage patterns. P1 created a query
just for fact searching, [[poem of address]], not in-
tending to include the result in the draft. Both P2 and P3
sought help on the title, as in [[good title, read be-
low]] (P2) and [[better title]] (P3), which was not
supported by the current ReadWriter version.
P2 had a unique composition strategy: his post consisted
only of bracket requests. His expectation was to only focus
on architectural aspects of writing while offloading the
execution to crowd workers. In one request, he inserted
[[make paragraph: talk about trip to Scot-
land in the beginning and appended 4 bullet points that
outlined the potential paragraph. The others did not out-
source any writing tasks.
Managing tasks
Four bloggers made a clear distinction between the writing
and editing phases: they finished through their first draft
with [[]] marks in places, and handled each item in the
list. This supports our premise that people will delegate
housekeeping until initial drafts. After the first iteration, the
transition between writing and editing was less obvious.
Reviewing results
The current system does not perform any result verifica-
tion. This led to a few failure cases, for instance, when a
Turker returned garbage data for P3’s request.
ReadWriter reduces the chance of serendipity because it
only samples a small number of search results. P1 pointed
out that an ideal tool will preserve both efficiency and dis-
covery. Twidale et al. [21] describe serendipity in the web
search process can encourage creativity and distract users at
the same time. Future design iterations of ReadWriter will
seek ways to achieve both goals.
Applying results
Inline updates for images and links worked without error in
all 14 tasks. A missing feature in the current prototype is
adding the body content of an external website. Extracting
the content should depend on human intelligence. For ex-
ample, P4 requested [[google interview ques-
tions]] to add a few examples of Google interview ques-
tions. The automatic agent related links with 2-3 lines of
description, but no results contained any actual examples.
A similar incident took place for P1 when she expected to
add the full text of a short poem.
Post-session interview
The participants found the double bracket syntax to be
“easy to learn” (P1) and “simple” (P2). All participants
were able to create their own requests after being shown 2-
3 examples. Response to usefulness differed among them.
P2 does not use Twitter, Facebook, or email proactively,
and he expected to only use Turkers and automatic agents.
A lightweight mechanism for reaching out to different con-
tributor groups might encourage bloggers to try out new
groups. P5 said, “I didn’t think of Twitter as a place I can
get help from. With the system, it might be nice to ask my

followers to help find a photo I missed from Google
search”. All the participants expressed willingness to use
ReadWriter in their actual blogging.
How do the bloggers feel about their writing experience
with ReadWriter? P4 described his experience as “similar
to managing a TODO list”, and P3 referred to her process
as “somewhere in between brain dump and real writing”.
P1 said, “You might even write more. Maybe I’ll blog
more. Maybe it’s good for my readers. Maybe it’s good for
my traffic. My posts will have more variety or something.”
One recurring theme was the need for keeping a group of
dedicated readers for initial reviews. P1 sends out email
drafts to intimate readers and P4 wants to have his re-
search-related post “peer-reviewed” before it goes out to
the public. P4 notes “ReadWriter can help junior research-
er and non-expert bloggers to have higher confidence.”
This model of reader-writer interaction can lead to the ‘be-
ta’ publishing model. In this model, a voluntary group of
readers will have exclusive access to initial drafts of the
blogger and offer feedback. Using a URL as a universal
access mechanism for contributors, ReadWriter can easily
support additional worker groups.
DISCUSSION
Personalized contexts
One of the most desired features from the bloggers was to
support personalized contexts. The bloggers created queries
such as [[search my tweets for gender break-
down computer science]] (P3) and [[My picture
at Google on 2010]] (P4). Personalization can be a
useful add-on to the system because it can widen the range
of resources that contributors can use to aid writers. The
system can adaptively improve its performance by learning
from the writer’s preference. One important discussion that
should follow the personalized engine is privacy. Tool de-
signers should carefully consider various related issues, in
order not to compromise on privacy.
Another topic related to personalized contexts is notes to
self. Some bloggers used the task list in ReadWriter as their
writing TODO list. They created tasks only for themselves,
not intended to be outsourced to any contributors (e.g.
[[TODO: remember questions..]] from P4). The
participants who generated self-tasks finished their first
draft and referred to each item in the list to finish editing.
ReadWriter offers the benefit of automatic list generation in
addition to task outsourcing for these users. ReadWriter can
help lift writers’ cognitive overhead in managing various
TODO items while writing.
Diverse work forces
The design decision of including multiple contributor
groups was based on an assumption that each group exhib-
its different cost structure, performance, and motivation. In
an ideal system, the groups will complement each other,
matching the nature of the task and the writer’s intention.
There are nontrivial technical and social challenges in real-
izing this vision.

Each work has different cost structure even when the work
looks seemingly free: A search agent is fast and cheap but
lacks precision and comprehension; A directed reader is
trustworthy and at the cost of the writer’s social capital.
Between the two ends lie other worker groups, each with
idiosyncratic properties. ReadWriter’s goal is not to auto-
matically minimize the cost for the writer, but to provide
writers with an open platform so that they can make the
best decision for their current writing task.
A new reader-writer interaction model
In this paper, we present a preliminary effort in bringing
readers into the writer’s writing process. This work ex-
plores only a portion of all the readers, i.e. readers from
writer’s social network. A promising future direction would
be to reach out to anonymous and unexplored readers who
can help the writer.
Leveraging the unexplored readers can allow more interac-
tions between readers and writers, including polling, sub-
mitting short answers to the writer’s questions, suggesting
topics for next posts [7], marking unclear content, and add-
ing useful information to the article. One potential en-
hancement to the ReadWriter system is to capture such
interactions with existing [[]] syntax. For example,
- [[What gadgets will survive 10 years from now?]]
- What should I write about next? ipad[[vote]] food[[vote]]
- [[4pm on Friday, RSVP plz]] (from P5)
CONCLUSION AND FUTURE WORK
This paper presents new modes of task automation and
feedback support for bloggers. ReadWriter allows natural
language requests in double brackets, which can then be
assigned to diverse contributor groups. We present task
categorization results drawn from crowdsourced data, and
quantitatively report an observational study of five bloggers
using ReadWriter for a blogging task.
The next step in this research is to deploy the system to the
public, and collect and analyze longitudinal usage data.
This data can answer many questions: how bloggers rely on
their readership and social network for receiving writing
help; how ReadWriter influences bloggers’ writing process
in the long-term; what social conventions in reading and
writing emerge from the interactions embedded in the tool.
The larger vision of this work is to bridge the gap between
readers and writers. Motivating lurking readers to contrib-
ute to the writing process or published article is a challeng-
ing problem. We further hope to discover benefits in clos-
ing the feedback loop, which reflects back the writer’s re-
sponse to reader feedback. This effort will contribute to the
study of web readability enhancement. Collaboration be-
tween researchers focusing on reading and writing will
potentially impact the reader-writer eco-system.
REFERENCES
1. Babaian, T., Grosz, B.J., and Shieber, S.M. A writerʼs col-

laborative assistant. IUI ’02, ACM Press (2002), 7.
2. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent : A

Word Processor with a Crowd Inside. UIST 2010.

3. Bernstein, M.S., Marcus, A., Karger, D.R., and Miller,
R.C. Enhancing directed content sharing on the web. CHI
’10, (2010), 971.

4. Bernstein, M.S., Tan, D., Smith, G., Czerwinski, M., and
Horvitz, E. Personalization via friendsourcing. ACM
Transactions on CHI 17, 2 (2010), 1-28.

5. Blogs of Note. http://blogsofnote.blogspot.com/.
6. Budzik, J. and Hammond, K. Watson : Anticipating and

Contextualizing Information Needs. ASIS&T 1999.
7. Dugan, C., Geyer, W., and Millen, D.R. Lessons Learned

from Blog Muse : Audience-based Inspiration for Blog-
gers. CHI2010, (2010), 1965-1974.

8. Elbow, P. (1998). Writing with power: techniques for mas-
tering the writing process. New York, NY: Oxford Univer-
sity Press.

9. Horowitz, D. and Kamvar, S.D. The anatomy of a large-
scale social search engine. WWW ’10, (2010), 431.

10. Hu, C., Bederson, B.B., and Resnik, P. Translation by Iter-
ative Collaboration between Monolingual Users.
HCOMPʼ10, (2010), 2-3.

11. Keh, C.L. Feedback in the writing process : a model and
methods for implementation. ELT Journal 4414, October
(1990), 294-304.

12. Kittur, A., Smus, B., and Kraut, R.E. CrowdForge :
Crowdsourcing Complex Work. Technical Report. CMU-
HCII-11-100, (2011).

13. Kriplean, T., Toomim, M., Morgan, J.T., Borning, A. and
Ko, A.J. REFLECT : Supporting Active Listening and
Grounding on the Web through Restatement. CSCW 2011
Horizons, (2011).

14. Kopytoff, V.G. Blogs Wane as the Young Drift to Sites
Like Twitter. 2011.
http://www.nytimes.com/2011/02/21/technology/internet/2
1blog.html.

15. Little, G. Exploring iterative and parallel human computa-
tion processes. HCOMPʼ10, (2010), 4309.

16. Little, G., Miller, R.C., Chou, V.N., Bernstein, M., and
Cypher, A. Sloppy Programming. In E. A. Cypher, M.
Dontcheva, T. Lau, and J. Nichols, ed., No Code Required:
Giving Users Tools to Transform the Web. Elsevier, 2010.

17. Preece, J. and Shneiderman, B. The Reader-to-Leader
Framework: Motivating Technology-Mediated Social Par-
ticipation. Transactions HCI 1, 1 (2009), 13-32.

18. Rhodes, B.J. and Maes, P. Just-in-time info retrieval
agents. IBM Systems Journal 39, 3 (2000), 685-704.

19. Rhodes, B.J. and Starner, T. Remembrance Agent : A con-
tinuously running automated information retrieval system.
PAAM, (1996), 122-125.

20. Technorati. http://www.technorati.com/.
21. Twidale, M.B., Gruzd, A. a, and Nichols, D.M. Writing in

the library: Exploring tighter integration of digital library
use with the writing process. Information Processing &
Management 44, 2 (2008), 558-580.

22. Wordpress Shortcode.
http://codex.wordpress.org/Shortcode.

23. Wordpress Blog of the Day.
http://botd.wordpress.com/top-posts/.

24. Zemanta. http://www.zemanta.com/

